精英家教网 > 初中数学 > 题目详情

【题目】如图,已知正方形ABCD的边长为4,点E、F分别在边AB、BC上,且AE=BF=1,CE、DF相交于点O,下列结论:

①∠DOC=90°,②OC=OE,③tan∠OCD=,④△COD的面积等于四边形BEOF的面积,正确的有 (  )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】分析:

由已知条件证△EBC≌△FCD,从而可得∠BCE=∠FDC,结合∠BCE+∠OCD=90°可得∠FDC+∠OCD=90°,由此可得∠DOC=90°,即可得到结论正确再证∠OCD=∠DFC可推导得到结论正确△EBC≌△FCD推导可得结论正确连接DE,假设结论成立可推导得到DE=DC=DA,这与DE>DA矛盾,从而说明结论错误

详解

四边形ABCD是正方形,

∴AB=BC=CD=DA=4,∠A=∠B=∠BCD=90°,

∵AE=BF=1,

∴AB-AE=BC-BF=4-1=3,BE=CF=3,

∴△EBC≌△FCD,tan∠DFC=

∴∠BCE=∠FDC,

∵∠BCE+∠OCD=90°,

∴∠FDC+∠OCD=90°,

∴∠DOC=180°-90°=90°,即结论正确

∴∠FOC=90°,

∴∠OFC+∠OCF=90°,

∵∠OCF+∠OCD=90°,

∴∠OCD=∠OCF,

∴tan∠OCD= tan∠DFC=,即结论正确

∵△EBC≌△FCD,

∴SEBC-SFOC=SFCD-SFOC

∴S四边形BEOF=SOCD,即结论正确

如下图连接DE,假设②OC=OE成立 ,

∵∠DOC=90°,

∴DF垂直平分AC,

∴DE=DC,

∵DC=DA,

∴DE=DA,而这与Rt△ADE中,直角边AD小于斜边DE矛盾,

结论错误

综上所述正确的结论是①③④3.

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,RtABC,ACB=90°,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角坐标系中,ABC绕点B顺时针旋转,使点A旋转至y轴的正半轴上的A,AO=OB=2,则阴影部分面积为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD内接于⊙OA是弧BDC的中点,AEACA,与⊙OCB的延长线交于点FE,且弧BF=弧AD.

(1)求证:△ADC∽△EBA

(2)如果AB=8,CD=5,求tan∠CAD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元与上网时间x(h)的函数关系如图所示,则下列判断错误的是  

A. 每月上网时间不足25h时,选择A方式最省钱 B. 每月上网费用为60元时,B方式可上网的时间比A方式多

C. 每月上网时间为35h时,选择B方式最省钱 D. 每月上网时间超过70h时,选择C方式最省钱

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为2的菱形ABCD中,∠A=60,点M是边AB上一点,点N是边BC上一点,且∠ADM=15,∠MDN=90,则点BDN的距离为( )

A. B. C. D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用火柴按下图中的方式搭图形:

1)按图示规律补全表格:

图形编号

火柴棒根数

7

12

   

   

   

2)按照这种方式搭下去,请写出搭第n个图形需要的火柴根数;

3)小明发现:按照这种方式搭图形会产生若干个正方形,若使用187根火柴搭图形,图中会产生多少个正方形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现代互联网技术的广泛应用,催生了快递行业的高速发展,小明计划给朋友快递一部分物品,经了解有甲乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费,乙公司表示:按每千克16元收费,另加包装费3元,设小明快递物品x千克.

(1)根据题意,填写下表:

快递物品重量(千克)

0.5

1

3

4

甲公司收费(元)

22

乙公司收费(元)

11

51

67

(2)设甲快递公司收费y1元,乙快递公司收费y2元,分别写出y1,y2关于x的函数关系式;

(3)x>3时,小明应选择哪家快递公司更省钱?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点ACF在坐标轴上,EOA的中点,四边形AOCB是矩形,四边形BDEF是正方形,若点C的坐标为(30),则点D的坐标为(  )

A. 12.5B. 11+ C. 13D. 11+

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,BAC=90°,BE平分∠ABC,AM⊥BC于点M,交BE于点G,AD平分MAC,交BC于点D,交BE于点F.

(1)判断直线BE与线段AD之间的关系,并说明理由;

(2)若C=30°,图中是否存在等边三角形?若存在,请写出来并证明;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案