【题目】如图,已知正方形ABCD的边长为4,点E、F分别在边AB、BC上,且AE=BF=1,CE、DF相交于点O,下列结论:
①∠DOC=90°,②OC=OE,③tan∠OCD=,④△COD的面积等于四边形BEOF的面积,正确的有 ( )
A. 1个 B. 2个 C. 3个 D. 4个
【答案】C
【解析】分析:
由已知条件证△EBC≌△FCD,从而可得∠BCE=∠FDC,结合∠BCE+∠OCD=90°可得∠FDC+∠OCD=90°,由此可得∠DOC=90°,即可得到结论①正确;再证∠OCD=∠DFC可推导得到结论③正确;由△EBC≌△FCD推导可得结论④正确;连接DE,假设结论②成立可推导得到DE=DC=DA,这与DE>DA矛盾,从而说明结论②错误;
详解:
∵四边形ABCD是正方形,
∴AB=BC=CD=DA=4,∠A=∠B=∠BCD=90°,
∵AE=BF=1,
∴AB-AE=BC-BF=4-1=3,即BE=CF=3,
∴△EBC≌△FCD,tan∠DFC=,
∴∠BCE=∠FDC,
∵∠BCE+∠OCD=90°,
∴∠FDC+∠OCD=90°,
∴∠DOC=180°-90°=90°,即结论①正确;
∴∠FOC=90°,
∴∠OFC+∠OCF=90°,
∵∠OCF+∠OCD=90°,
∴∠OCD=∠OCF,
∴tan∠OCD= tan∠DFC=,即结论③正确;
∵△EBC≌△FCD,
∴S△EBC-S△FOC=S△FCD-S△FOC,
∴S四边形BEOF=S△OCD,即结论④正确;
如下图,连接DE,假设②OC=OE成立 ,
∵∠DOC=90°,
∴DF垂直平分AC,
∴DE=DC,
∵DC=DA,
∴DE=DA,而这与Rt△ADE中,直角边AD小于斜边DE矛盾,
∴结论②错误,
综上所述,正确的结论是①③④共3个.
故选C.
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴的正半轴上的A处,若AO=OB=2,则阴影部分面积为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABCD内接于⊙O,A是弧BDC的中点,AE⊥AC于A,与⊙O及CB的延长线交于点F,E,且弧BF=弧AD.
(1)求证:△ADC∽△EBA;
(2)如果AB=8,CD=5,求tan∠CAD的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元与上网时间x(h)的函数关系如图所示,则下列判断错误的是
A. 每月上网时间不足25h时,选择A方式最省钱 B. 每月上网费用为60元时,B方式可上网的时间比A方式多
C. 每月上网时间为35h时,选择B方式最省钱 D. 每月上网时间超过70h时,选择C方式最省钱
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,边长为2的菱形ABCD中,∠A=60,点M是边AB上一点,点N是边BC上一点,且∠ADM=15,∠MDN=90,则点B到DN的距离为( )
A. B. C. D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用火柴按下图中的方式搭图形:
(1)按图示规律补全表格:
图形编号 | ① | ② | ③ | ④ | ⑤ |
火柴棒根数 | 7 | 12 |
|
|
|
(2)按照这种方式搭下去,请写出搭第n个图形需要的火柴根数;
(3)小明发现:按照这种方式搭图形会产生若干个正方形,若使用187根火柴搭图形,图中会产生多少个正方形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现代互联网技术的广泛应用,催生了快递行业的高速发展,小明计划给朋友快递一部分物品,经了解有甲乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费,乙公司表示:按每千克16元收费,另加包装费3元,设小明快递物品x千克.
(1)根据题意,填写下表:
快递物品重量(千克) | 0.5 | 1 | 3 | 4 | … |
甲公司收费(元) | 22 | … | |||
乙公司收费(元) | 11 | 51 | 67 | … |
(2)设甲快递公司收费y1元,乙快递公司收费y2元,分别写出y1,y2关于x的函数关系式;
(3)当x>3时,小明应选择哪家快递公司更省钱?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点A、C、F在坐标轴上,E是OA的中点,四边形AOCB是矩形,四边形BDEF是正方形,若点C的坐标为(3,0),则点D的坐标为( )
A. (1,2.5)B. (1,1+ )C. (1,3)D. (﹣1,1+ )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=90°,BE平分∠ABC,AM⊥BC于点M,交BE于点G,AD平分∠MAC,交BC于点D,交BE于点F.
(1)判断直线BE与线段AD之间的关系,并说明理由;
(2)若∠C=30°,图中是否存在等边三角形?若存在,请写出来并证明;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com