【题目】如图,四边形ABCD中,AD∥BC,AB=DC,AD=3cm,BC=7cm,∠B=60°,P为BC边上一点(不与B,C重合),连接AP,过P点作PE交DC于E,使得∠APE=∠B.
(1)求证:△ABP∽△PCE;
(2)求AB的长;
(3)在边BC上是否存在一点P,使得DE:EC=5:3?如果存在,求BP的长;如果不存在,请说明理由.
【答案】(1)见解析。(2)4.(3)见解析。BP=1或BP=6
【解析】
(1)先利用平角的定义和三角形的内角和定理判断出∠BAP=∠CPE,再判断出四边形ABCD是等腰梯形,进而得出∠B=∠C,即可得出结论;
(2)利用等腰梯形的性质求出BF,进而求出AB,即可得出结论;
(3)先求出CD=4,进而求出CE,最后借助(1)的结论得出比例式建立方程求解,即可得出结论.
解:(1)在△ABP中,∠B+∠BAP+∠APB=180°
∵∠APE=∠B,
∴∠APE+∠BAP+∠APB=180°,
∵∠APB+∠APE+∠CPE=180°,
∴∠BAP=∠CPE,
∵AD∥BC,AD=3,BC=7,
∴四边形ABCD是梯形,
∵AB=DC,
∴∠B=∠C,
∴△ABP∽△PCE;
(2)如图,
过点A作AF⊥BC于F,
在梯形ABCD中,AB=CD,
∴BF=(BC-AD)=2,
在Rt△ABF中,∠B=60°,
∴∠BAF=30°,
∴AB=2BF=4;
(3)由(2)知,AB=4,
∵CD=AB,
∴CD=4,
∵DE:EC=5:3,
∴CE=CD=×4=,
∵BC=7,
∴CP=BC-BP=7-BP,
由(1)知,△ABP∽△PCE,
∴,∴=,
∴BP2-7BP+6=0,
∴BP=1或BP=6,
∵点P在BC上,
∴0<BP<7,
∴BP=1或BP=6.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4.Rt△MPN中,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABD和△BDC都是直角三角形,且∠ABD=∠BDC=90°,∠BAD=30°,∠DBC=45°,则tan∠DAC的值为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知下列函数:(1)y=3﹣2x2;(2)y=;(3)y=3x(2x﹣1);(4)y=﹣2x2;(5)y=x2﹣(3+x)2;(6)y=mx2+nx+p(其中m、n、p为常数).其中一定是二次函数的有( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图为二次函数y=ax2+bx+c的图象,给出下列说法:①ab<0;②方程x2+bx+c=0的根为x1=-1,x2=3;③a+b+c>0;④当x>1时,y随x值的增大而增大;⑤当y>0时,-1<x<3.其中正确的说法有__.(请写出所有正确说法的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=ax2+bx,其对称轴与两段抛物线所围成的阴影部分的面积为,则a、b的值分别为( )
A. , B. ,﹣ C. ,﹣ D. ﹣,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元。
(1)求购买一个足球、一个篮球各需多少元?
(2)根据学校实际情况,需从体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某民航飞机在大连海域失事,为调查失事原因,决定派海军潜水员打捞飞机上的黑匣子,如图所示,一潜水员在A处以每小时8海里的速度向正东方向划行,在A处测得黑匣子B在北偏东60°的方向,划行半小时后到达C处,测得黑匣子B在北偏东30°的方向,在潜水员继续向东划行多少小时,距离黑匣子B最近,并求最近距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com