分析 先根据待定系数法求得直线AB的解析式为y=$\frac{4}{3}$x+4,然后根据A(0,4),B(-3,0)两点计算出S△OAB=6,设P点的纵坐标为t,由于△ABO被直线OP分成面积之比为1:4,则分类讨论:当S△POB=$\frac{1}{5}$S△ABO=$\frac{6}{5}$时,$\frac{1}{2}$•3•t=$\frac{6}{5}$,解得t=$\frac{4}{5}$,利用y=$\frac{4}{3}$x+4得到P(-$\frac{12}{5}$,$\frac{4}{5}$),然后利用待定系数法求出直线PO的解析式;当S△POB=$\frac{4}{5}$S△ABO=$\frac{24}{5}$时,则$\frac{1}{2}$•OB•t=$\frac{24}{5}$,解得t=$\frac{16}{5}$,利用y=$\frac{4}{3}$x+4得P(-$\frac{3}{5}$,$\frac{16}{5}$),然后利用待定系数法求出直线PO的解析式.
解答
解:∵A(0,4),B(-3,0)两点,
∴直线AB为y=$\frac{4}{3}$x+4,S△OAB=$\frac{1}{2}$×4×3=6,
设P点的纵坐标为t,
因为△ABO被直线OP分成面积之比为1:4,
当S△POB=$\frac{1}{5}$S△ABO=$\frac{6}{5}$时,
则$\frac{1}{2}$•OB•t=$\frac{6}{5}$,即$\frac{1}{2}$•3•t=$\frac{6}{5}$,解得t=$\frac{4}{5}$,
把y=$\frac{4}{5}$代入y=$\frac{4}{3}$x+4得$\frac{1}{3}$x+1=$\frac{1}{5}$,解得x=-$\frac{12}{5}$,则P(-$\frac{12}{5}$,$\frac{4}{5}$),
把P(-$\frac{12}{5}$,$\frac{4}{5}$)代入y=kx得$\frac{4}{5}$=-$\frac{12}{5}$k,解得k=-$\frac{1}{3}$,
所以直线PO的解析式为y=-$\frac{1}{3}$x;
当S△POB=$\frac{4}{5}$S△ABO=$\frac{24}{5}$时,
则$\frac{1}{2}$•OB•t=$\frac{24}{5}$,即$\frac{1}{2}$•3•t=$\frac{24}{5}$,解得t=$\frac{16}{5}$,
把y=$\frac{16}{5}$代入y=$\frac{4}{3}$x+4得$\frac{1}{3}$x+1=$\frac{4}{5}$,解得x=-$\frac{3}{5}$,则P(-$\frac{3}{5}$,$\frac{16}{5}$),
把P(-$\frac{3}{5}$,$\frac{16}{5}$)代入y=kx得$\frac{16}{5}$=-$\frac{3}{5}$k,解得k=-$\frac{16}{3}$,
所以直线PC的解析式为y=-$\frac{16}{3}$x,
综上所述,该直线的表达式为y=-$\frac{1}{3}$x或y=-$\frac{16}{3}$x.
点评 本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\sqrt{a}$ | B. | $\sqrt{\frac{1}{{a}^{2}}}$ | C. | $\sqrt{{a}^{2}}$ | D. | $\sqrt{-{a}^{2}}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 甲:2(x-3)-(1-2x)=1 | B. | 乙:2(x-3)-1+2x=6 | C. | 丙:2x-3-1+2x=6 | D. | 丁:2(x-3)-1-2x=6 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com