精英家教网 > 初中数学 > 题目详情

【题目】如图,已知AB是⊙O的直径,PC切⊙O于点P,过A作直线ACPC交⊙O于另一点D,连接PAPB

(1)求证:AP平分∠CAB

(2)P是直径AB上方半圆弧上一动点,⊙O的半径为2,则

①当弦AP的长是_____时,以AOPC为顶点的四边形是正方形;

②当的长度是______时,以ADOP为顶点的四边形是菱形.

【答案】(1)证明见解析;(2)2;②ππ

【解析】

(1)利用切线的性质得OPPC,再证明ACOP得到∠1=∠3,加上∠2=∠3,所以∠1=∠2

(2)①当∠AOP90°,根据正方形的判定方法得到四边形AOPC为正方形,从而得到AP2

②根据菱形的判定方法,当ADAPOPOD时,四边形ADOP为菱形,所以AOPAOD为等边三角形,然后根据弧长公式计算的长度.当ADDPPOOA时,四边形ADPO为菱形,AODDOP为等边三角形,则∠AOP120°,根据弧长公式计算的长度.

(1)PC切⊙O于点P

OPPC

ACPC

ACOP

∴∠1=∠3

OPOA

∴∠2=∠3

∴∠1=∠2

AP平分∠CAB

(2)①当∠AOP90°,四边形AOPC为矩形,而OAOP,此时矩形AOPC为正方形,

APOP2

②当ADAPOPOD时,四边形ADOP为菱形,AOPAOD为等边三角形,则∠AOP60°的长度==π

ADDPPOOA时,四边形ADPO为菱形,AODDOP为等边三角形,则∠AOP120°的长度=

故答案为2ππ

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,△ABC是等边三角形,点D是平面内一点,连接CD,将线段CDC顺时针旋转60°得到线段CE,连接BEAD,并延长ADBE于点P

1)当点D在图1所在的位置时

求证:△ADC≌△BEC

求∠APB的度数;

求证:PD+PEPC

2)如图2,当△ABC边长为4AD2时,请直接写出线段CE的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线经过点.是线段上一动点(点不与重合),过点轴的垂线交抛物线于点,交线段于点.过点,垂足为点.

[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/18/2206393160556544/2207286529548288/STEM/a9696d0cbdac438aa94c80bfc838afd4.png]

1)求该抛物线的解析式;

2)试求线段的长关于点的横坐标的函数解析式,并求出的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点O为坐标原点,抛物线yax24axx轴正半轴于点A50),交y轴于点B

1)求抛物线的解析式;

2)如图1,点P为第一象限内抛物线上一点,连接AP,将射线AP绕点A逆时针旋转60°,与过点P且垂直于AP的直线交于点C,设点P横坐标为t,点C的横坐标为m,求mt之间的函数关系式(不要求写出t的取值范围);

3)如图2,在(2)的条件下,过点C作直线交x轴于点D,在x轴上取点F,连接FP,点EAC的中点,连接ED,若F的横坐标为-,∠AFP=∠CDE,且∠FAP+ACD180°,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴交于两点.

1)求该抛物线的解析式;

2)抛物线的对称轴上是否存在一点,使的周长最小?若存在,请求出点的坐标,若不存在,请说明理由.

3)设抛物线上有一个动点,当点在该抛物线上滑动到什么位置时,满足,并求出此时点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,CD切⊙O于点CAD交⊙O于点EAC平分∠BAD,连接BE

1)求证:CDED

2)若CD=4AE=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算

1(xy)22x(xy)     2(a1)(a1)(a1)2

3)先化简,再求值:

(x2y)(x2y)(2x3y4x2y2)÷2xy,其中x=3.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八年级某班同学为了了解2012年某居委会家庭月均用水情况,随机调查了该居委会部分家庭,并将调查数据进行如下调整:

月均用水量x(t)

频数(户)

频率

0<x≤5

6

 0.12

5<x≤10

a

 0.24

10<x≤15

16

 0.32

15<x≤20

10

 0.20

20<x≤25

4

0.08

25<x≤30

2

 0.04

请解答以下问题:

(1)频数分布表中a=   ,把频数分布直方图补充完整;

(2)求该居委会用水量不超过15t的家庭占被调查家庭总数的百分比;

(3)若该居委会有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数yk1xb的图象与反比例函数y (x<0)的图象相交于点A(-1,2)、点B(-4,n).

(1)求此一次函数和反比例函数的表达式;

(2)AOB的面积;

(3)x轴上存在一点P,使PAB的周长最小,求点P的坐标.

查看答案和解析>>

同步练习册答案