【题目】把下列各式分解因式:
(1)-16+x4y4;
(2)(x2+y2)2-4x2y2;
(3)(x2+6x)2+18(x2+6x)+81.
【答案】(1) (x2y2+4)(xy+2)(xy-2)(2) (x+y)2(x-y)2(3) (x+3)4.
【解析】试题分析:(1)先利用平方差公式因式分解可得(x2y2+4)(x2y2-4),再利用平方法差公式进一步分解可得(x2y2+4)(xy+2)(xy-2),(2) 先利用平方差公式因式分解可得(x2+y2+2xy)(x2+y2-2xy),再利用完全平方公式进一步分解可得(x+y)2(x-y)2,(3) 先利用完全平方公式因式分解可得(x2+6x+9)2,再利用完全平方公式进一步分解可得[(x+3)2]2,最后可得: (x+3)4.
试题解析:(1)原式=x4y4-16=(x2y2+4)(x2y2-4)=(x2y2+4)(xy+2)(xy-2),
(2)原式=(x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2.
(3)原式=(x2+6x+9)2=[(x+3)2]2=(x+3)4.
科目:初中数学 来源: 题型:
【题目】计算。
(1)化简:3x2﹣5x﹣6﹣7x2﹣6x+15
(2)先化简,再求值:﹣2x2﹣2[3y2﹣2(x2﹣y2)+6],其中x=﹣1,y=﹣2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中,错误的是( )
A.经过两点有且只有一条直线
B.除以一个数等于乘这个数的倒数
C.两个负数比较大小,绝对值大的反而小
D.两点之间的所有连线中,直线最短
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128…
则算式(2+1) ×(22+1) ×(24+1) ×…×(232+1)+1计算结果的个位数字是_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列由连续的正整数组成的等式:
第1层 1+2=3
第2层 4+5+6=7+8
第3层 9+10+11+12=13+14+15
第4层 16+17+18+19+20=21+22+23+24
……
(1)第6层等号右侧的第一个数是 ,第n层等号右侧的第一个数是 (用含n的式子表示,n是正整数);
(2)数字2016排在第几层?请简要说明理由;
(3)求第99层右侧最后三个数字的和.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为节约用水,某市规定三口之家每月标准用水量为15立方米,超过部分加价收费,假设不超过部分水费为1.5元/立方米,超过部分水费为3元/立方米.
(1)请用代数式分别表示这家按标准用水和超出标准用水各应缴纳的水费;
(2)如果这家某月用水20立方米,那么该月应交多少水费?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】分解因式:
(1)2a3-8a;
(2)-3x2-12+12x;
(3)(a+2b)2+6(a+2b)+9;
(4)2(x-y)2-x+y;
(5)(a2+4b2)2-16a2b2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com