精英家教网 > 初中数学 > 题目详情

【题目】已知在四边形ABCD中,∠ABC+ADC=180°,AB=BC.

(1)如图1,若∠BAD=90°,AD=2,求CD的长度;

(2)如图2,点P、Q分别在线段AD、DC上,满足PQ=AP+CQ,求证:∠PBQ=90°ADC;

(3)如图3,若点Q运动到DC的延长线上,点P也运动到DA的延长线上时,仍然满足PQ=AP+CQ,则(2)中的结论是否成立?若成立,请给出证明过程,若不成立,请写出∠PBQ与∠ADC的数量关系,并给出证明过程.

【答案】(1)CD=2;(2)证明见解析;(3)(2)中结论不成立,应该是:,理由见解析.

【解析】

(1)如图1,利用HL证得两个直角三角形全等:Rt△BAD≌Rt△BCD,则其对应边相等:AD=DC=2;
(2)如图2,延长DC,在上面找一点K,使得CK=AP,连接BK,通过证△BPA≌△BCK(SAS)得到:∠1=∠2,BP=BK.然后由全等三角形△PBQ≌△BKQ的对应角相等求得∠PBQ=∠ABC,结合已知条件“∠ABC+∠ADC=180°”可以推知∠PBQ=90°-ADC
(3)(2)中结论不成立,应该是:∠PBQ=90°+ADC
如图3,在CD延长线上找一点K,使得KC=AP,连接BK,构建全等三角形:△BPA≌△BCK(SAS),由该全等三角形的性质和全等三角形的判定定理SSS证得:△PBQ≌△BKQ,则其对应角相等:∠PBQ=∠KBQ,结合四边形的内角和是360度可以推得:∠PBQ=90°+ADC

(1)

RtBADRtBCD中,

RtBADRtBCD(HL)

AD=DC=2 DC=2

(2)如图,延长DC,在上面找一点K,使得CK=AP,连接BK

BPABCK

∴△BPA≌△BCK(SAS)

,BP=BK

PQ=AP+CQ

PQ=QK

PBQBKQ

∴△PBQ≌△BKQ(SSS)

(3)(2)中结论不成立,应该是:

CD延长线上找一点K,使得KC=AP,连接BK

在△BPA和△BCK

∴△BPA≌△BCK(SAS)

,BP=BK

PQ=AP+CQ

PQ=QK

在△PBQ和△BKQ

∴△PBQ≌△BKQ(SSS)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列说法中正确的是(

A. 已知a,b,c是三角形的三边,则a2+b2=c2

B. 在直角三角形中,两边的平方和等于第三边的平方

C. RtABC中,∠,所以a2+b2=c2

D. RtABC中,∠,所以a2+b2=c2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC,已知AB=AC,DAC上的一点,CD=9,BC=15,BD=12.

(1)证明:BCD是直角三角形.

(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AGCF.下列结论:①△ABG≌△AFG②BG=GC③AG∥CF④S△FGC=3.其中正确结论的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某小商场以每件20元的价格购进一种服装,先试销一周,试销期间每天的销量(件)与每件的销售价x(元/件)如下表:

x(元/件)

38

36

34

32

30

28

26

t(件)

4

8

12

16

20

24

28

假定试销中每天的销售量t(件)与销售价x(元/件)之间满足一次函数.
(1)试求t与x之间的函数关系式;
(2)在商品不积压且不考虑其它因素的条件下,每件服装的销售定价为多少时,该小商场销售这种服装每天获得的毛利润最大?每天的最大毛利润是多少?(注:每件服装销售的毛利润=每件服装的销售价﹣每件服装的进货价)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若抛物线y=ax2+bx+c如图所示,下列四个结论: ①abc<0;②b﹣2a<0;③a﹣b+c<0;④b2﹣4ac>0.
其中正确结论的个数是(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s和t之间的关系).根据图象提供的信息,解答下列问题:
(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;
(2)求截止到几月末公司累积利润可达到30万元;
(3)求第8个月公司所获利润是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3, ),点C的坐标为(,0),点P为斜边OB上的一个动点,则PA+PC的最小值为( )

A. B. C. D. 2

查看答案和解析>>

同步练习册答案