【题目】阅读下面方法,解答后面的问题:
(阅读理解)我们已经学习了利用配方法解一元二次方程,其实配方法还有其他重要应用。
例题:已知x可取任意实数,试求二次三项式
的取值范围。
解:![]()
∵x取任何实数,总有
,∴
。
因此,无论x取任何实数,
的值总是不小于-4的实数。
特别的,当x=3时,
有最小值-4
(应用1):已知x可取任何实数,则二次三项式
的最值情况是( )
A. 有最大值-10 B. 有最小值-10 C. 有最大值-7 D. 有最小值-7
(应用2):某品牌服装进货价为每件50元,商家在销售中发现:当以每件90元销售时,平均每天可售出20件,为了扩大销售量,增加盈利,商家决定采取适当的降价措施。
(1)将市场调查发现:如果每件服装降价1元,那么平均每天那就可多售出2件,要想平均每天销售这种服装盈利为1200元,我们设降价x元,根据题意列方程得( )
A.
B. ![]()
C.
D. ![]()
(2)请利用上面(阅读理解)提供的方法解决下面问题:
这家服装专柜为了获得每天的最大盈利,每件服装需要降价多少元?每天的最大盈利又是多少元?
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线
与
轴交于点
,点
在直线
上,点
是线段
上的一个动点,过点
作
轴交直线
点
,设点
的横坐标为
.
![]()
(1)
的值为 ;
(2)用含有
的式子表示线段
的长;
(3)若
的面积为
,求
与
之间的函数表达式,并求出当
最大时点
的坐标;
(4)在(3)的条件下,把直线
沿着
轴向下平移,交
轴于点
,交线段
于点
,若点
的坐标为
,在平移的过程中,当
时,请直接写出点
的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于反比例函数y=-
,下列说法不正确的是( )
A. 图象经过点(1,-3)
B. 图象分布在第二、四象限
C. 当x>0时,y随x的增大而增大
D. 点A(x1,y1),B(x2,y2)都在反比例函数y=-
的图象上,若x1<x2,则y1<y2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在
中,
,
,
,点
从点
开始沿
边向点
以
的速度移动,点
从点
开始沿
边向点
以2
的速度移动.
(1)如果点
,
分别从点
,
同时出发,那么几秒后,
的面积等于6
?
(2)如果点
,
分别从点
,
同时出发,那么几秒后,
的长度等于7
?
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为4,点E、F分别在边AB,BC上,且AE=BF=1,CE,DF交于点O,下面结论:(1)∠DOC=90°;(2)OC=OE ;(3)S△ODC=S四边形BEOF.
其中正确的有____________(只填写序号)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如果一个三角形的一个内角等于另一个内角的两倍,则称这样的三角形为“倍角三角形”.
(1)如图1,△ABC中,AB=AC,∠A为36°,求证:△ABC 是锐角三角形;
(2)若△ABC是倍角三角形,
,∠B=30°,AC=
,求△ABC面积;
(3)如图2,△ABC的外角平分线AD与CB的延长线相交于点D,延长CA到点E,使得AE=AB,若AB+AC=BD,请你找出图中的倍角三角形,并进行证明.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是( )
A. a≤﹣1或
≤a<
B.
≤a<![]()
C. a≤
或a>
D. a≤﹣1或a≥![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰
中,
,D为BC的中点,过点C作
于点G,过点B作
于点B,交CG的延长线于点F,连接DF交AB于点E.
![]()
(1)求证:
;
(2)求证:AB垂直平分DF;
(3)连接AF,试判断
的形状,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com