精英家教网 > 初中数学 > 题目详情

【题目】如图,已知BC∥GE,AF∥DE,∠1=56°.

(1)求AFG的度数;

(2)若AQ平分FAC,交BC于点Q,且Q=14°,求ACB的度数.

【答案】(1)56°,(2)84°.

【解析】

(1)先根据BCEG得出∠E=1=56°,再由AFDE可知∠AFG=E=56°;

(2)作AMBC,由平行线的传递性可知AMEG,故∠FAM=AFG,再根据AMBC可知∠QAM=Q,故∠FAQ=FAM+QAM,再根据AQ平分∠FAC可知∠MAC=QAC+QAM=84°,根据AMBC即可得出结论.

(1)BCEG,

∴∠E=1=56°.

AFDE,

∴∠AFG=E=56°;

(2)作AMBC,

BCEG,

AMEG,

∴∠FAM=AFG=56°.

AMBC,

∴∠QAM=Q=14°,

∴∠FAQ=FAM+QAM=70°.

AQ平分∠FAC,

∴∠QAC=FAQ=70°,

∴∠MAC=QAC+QAM=84°.

AMBC,

∴∠ACB=MAC=84°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,∠C=120°,AD=2AB=4,点H、G分别是边CD、BC上的动点.连接AH、HG,点EAH的中点,点FGH的中点,连接EF.则EF的最大值与最小值的差为( )

A. 1 B. ﹣1 C. D. 2﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图AOCBOC互余OD平分BOCEOC2∠AOE

1)若AOD75°AOE的度数

2)若DOE54°EOC的度数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:AD平分∠CAE,AD∥BC.

(1)求证:△ABC是等腰三角形.

(2)当∠CAE等于多少度时△ABC是等边三角形?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下面推理过程

如图,已知DEBCDFBE分别平分∠ADEABC,可推得∠FDE=DEB的理由:

DEBC(已知)

∴∠ADE=      .(       

DFBE分别平分∠ADEABC

∴∠ADF=      

ABE=      .(       

∴∠ADF=ABE

DF    .(       

∴∠FDE=DEB. (      

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,⊙C的半径为r,点P是与圆心C不重合的点,给出如下定义:若点P′为射线CP上一点,满足CPCP′=r2 , 则称点P′为点P关于⊙C的反演点.右图为点P及其关于⊙C的反演点P′的示意图.

(1)如图1,当⊙O的半径为1时,分别求出点M(1,0),N(0,2),T()关于⊙O的反演点M′,N′,T′的坐标;
(2)如图2,已知点A(1,4),B(3,0),以AB为直径的⊙G与y轴交于点C,D(点C位于点D下方),E为CD的中点.
①若点O,E关于⊙G的反演点分别为O′,E′,求∠E′O′G的大小;
②若点P在⊙G上,且∠BAP=∠OBC,设直线AP与x轴的交点为Q,点Q关于⊙G的反演点为Q′,请直接写出线段GQ′的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(6,6),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB于点G,ED的延长线交线段OA于点H,连CH、CG.

(1)求证:CBG≌△CDG;

(2)求HCG的度数;并判断线段HG、OH、BG之间的数量关系,说明理由;

(3)连结BD、DA、AE、EB得到四边形AEBD,在旋转过程中,四边形AEBD能否为矩形?如果能,请求出点H的坐标;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C,E,F,B在同一直线上,点A,DBC异侧,AB∥CD,AE=DF,∠A=∠D.

(1)求证:AB=CD;

(2)若AB=CF,∠B=30°,求∠D的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,定义直线y=ax+b为抛物线y=ax2+bx的特征直线,C(a,b)为其特征点.设抛物线y=ax2+bx与其特征直线交于A、B两点(点A在点B的左侧).

(1)当点A的坐标为(0,0),点B的坐标为(1,3)时,特征点C的坐标为


(2)若抛物线y=ax2+bx如图所示,请在所给图中标出点A、点B的位置;
(3)设抛物线y=ax2+bx的对称轴与x轴交于点D,其特征直线交y轴于点E,点F的坐标为(1,0),DE∥CF.
①若特征点C为直线y=﹣4x上一点,求点D及点C的坐标
②若<tan∠ODE<2,则b的取值范围是

查看答案和解析>>

同步练习册答案