【题目】如图,在平面直角坐标系中,O为坐标原点,正比例函数的图像与反比例函数的图像都经过点A(2,m).
(1)求反比例函数的解析式;
(2)点B在轴的上,且OA=BA,反比例函数图像上有一点C,且∠ABC=90°,求点C坐标.
【答案】(1)反比例函数的解析式为:;(2)点C坐标为(4,).
【解析】
(1)将点A坐标代入正比例函数解析式求出m,可得点A的完整坐标,再将点A代入反比例函数的解析式求出k即可;
(2)过点A作AD垂直OB于D,根据等腰三角形三线合一可得OD=BD,求出B点坐标,利用两点间距离公式表示出AB、BC和AC,根据∠ABC=90°利用勾股定理列出方程,解方程即可解决问题.
解:(1)将点A(2,m)代入,得:,
∴A(2,),
将点A(2,)代入得:,
∴,
∴反比例函数的解析式为:;
(2)过点A作AD垂直OB于D,
∵OA=BA,
∴OD=BD,
∵A(2,),
∴OD=2,
∴OB=4,即B(4,0),
设点C坐标为(a,),
则,,,
∵∠ABC=90°,
∴,即,
整理得:,
解得:a=4或-3,
经检验,a=4或-3均是分式方程的解,
∵x>0,
∴a=4,
∴点C坐标为(4,).
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,且于点E,与CD相交于点F,于点H,交BE于点G.下列结论:①BD=CD;②AD+CF=BD;③;④AE=CF.其中正确的是____________(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法错误的是( ).
A.在一个角的内部(包括顶点)到角的两边距离相等的点的轨迹是这个角的平分线
B.到点距离等于的点的轨迹是以点为圆心,半径长为的圆
C.到直线距离等于的点的轨迹是两条平行于且与的距离等于的直线
D.等腰三角形的底边固定,顶点的轨迹是线段的垂直平分线
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作EC⊥OB,交⊙O于点C,作直径CD,过点C的切线交DB的延长线于点P,作AF⊥PC于点F,连接CB.
(1)求证:AC平分∠FAB;
(2)求证:BC2=CECP;
(3)当AB=4且=时,求劣弧的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC三顶点A(﹣5,0)、B(﹣2,4)、C(﹣1,﹣2),△A'B'C'与△ABC关于y轴对称.
(1)直接写出A'、B'、C'的坐标;
(2)画出△A'B'C';
(3)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD中,点E在边AB上,连结DE,CE.
(1)若∠A=∠B=∠DEC=50°,找出图中的相似三角形,并说明理由;
(2)若四边形ABCD为矩形,AB=5,BC=2,且图中的三个三角形都相似,求AE的长.
(3)若∠A=∠B=90°,AD<BC,图中的三个三角形都相似,请判断AE和BE的数量关系并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com