精英家教网 > 初中数学 > 题目详情

【题目】如图,点E是正方形ABCD的边CD上一点,以A为圆心,AB为半径的弧与BE交于点F,则∠EFD=_____°.

【答案】45

【解析】

由四边形ABCD为正方形及半径相等得到AB=AF=AD,ABD=ADB=45°,利用等边对等角得到两对角相等,由四边形ABFD的内角和为360度,得到四个角之和为270,利用等量代换得到∠ABF+ADF=135°,进而确定出∠1+2=45°,由∠EFD为三角形DEF的外角,利用外角性质即可求出∠EFD的度数.

∵正方形ABCD,AF,AB,AD为圆A半径,

AB=AF=AD,ABD=ADB=45°,

∴∠ABF=AFB,AFD=ADF,

∵四边形ABFD内角和为360°,BAD=90°,

∴∠ABF+AFB+AFD+ADF=270°,

∴∠ABF+ADF=135°,

∵∠ABD=ADB=45°,即∠ABD+ADB=90°,

∴∠1+2=135°90°=45°,

∵∠EFD为△DEF的外角,

∴∠EFD=1+2=45°.

故答案为:45

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在边长为a的正方形中挖掉一个边长为b的小正方形(a>b,把余下的部分剪拼成一个矩形(如图),通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是(

A.a2-b2=a+b)(a-b

B.a+b2=a2+2ab+b2

C.a-b2=a2-2ab+b2

D.a2-ab=aa-b

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人用如图的两个分格均匀的转盘做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:

用列表格或画树状图的方法表示游戏所有可能出现的结果.

求甲、乙两人获胜的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个求助没有用(使用求助可以让主持人去掉其中一题的一个错误选项).

(1)如果小明第一题不使用求助,那么小明答对第一道题的概率是  

(2)如果小明将求助留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.

(3)从概率的角度分析,你建议小明在第几题使用求助.(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:

尺规作图:过圆外一点作圆的切线.

已知:P⊙O外一点.

求作:经过点P⊙O的切线.

小敏的作法如下:如图,

(1)连接OP,作线段OP的垂直平分线MNOP于点C.

(2)以点C为圆心,CO的长为半径作圆,交⊙OA,B两点.

(3)作直线PA,PB.

老师认为小敏的作法正确.

请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是   ;由此可证明直线PA,PB都是⊙O的切线,其依据是   .请写出证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:关于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整数).

(1)求证:方程有两个不相等的实数根;

(2)若方程的两个实数根都是整数,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=kx+bk≠0)与抛物线y=ax2a≠0)交于AB两点,且点A的横坐标是-2,点B的横坐标是3,则以下结论:

抛物线y=ax2a≠0)的图象的顶点一定是原点;

②x0时,直线y=kx+bk≠0)与抛物线y=ax2a≠0)的函数值都随着x的增大而增大;

③AB的长度可以等于5

④△OAB有可能成为等边三角形;

-3x2时,ax2+kxb

其中正确的结论是( )

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,正比例函数的图像与反比例函数的图像都经过点A2m).

(1)求反比例函数的解析式;

(2)B轴的上,且OA=BA,反比例函数图像上有一点C,且∠ABC=90°,求点C坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,直径,半径,点上,且点与点在直径的两侧,连结.若,则的度数是________

查看答案和解析>>

同步练习册答案