精英家教网 > 初中数学 > 题目详情

【题目】每天锻炼一小时,健康生活一辈子,学校准备从小明和小亮2人中随机选拔一人当阳光大课间领操员,体育老师设计的游戏规则是:将四张扑克牌(方块2、黑桃4、黑桃5、梅花5)的牌面如图1,扑克牌洗匀后,如图2背面朝上放置在桌面上.小亮和小明两人各抽取一张扑克牌,两张牌面数字之和为奇数时,小亮当选;否则小明当选.

1)请用树状图或列表法求出所有可能的结果;

2)请问这个游戏规则公平吗?并说明理由.

【答案】1)见解析;(2)此游戏规则不公平,理由见解析

【解析】

1)利用树状图展示所有有12种等可能的结果;

2)两张牌面数字之和为奇数的有8种情况,再根据概率公式求出P(小亮获胜)和P(小明获胜),然后通过比较两概率的大小判断游戏的公平性.

1)画树状图如下:

2)此游戏规则不公平.

理由如下:

由树状图知,共有12种等可能的结果,其中两张牌面数字之和为奇数的有8种情况,

所以P(小亮获胜)=P(小明获胜)=1

因为

所以这个游戏规则不公平.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】《孙子算经)是我国传统数学的重要著作之一,其中记载的“荡杯问题”非常有趣.原题是今有妇人河上荡杯,津吏问日:“杯何以多?”妇人日:“有客.”津吏日:“客几何?”妇人日:“两人共饭,三人共羹,四人共肉,凡用杯六十五.不知客几何?”

大意:一个妇女在河边洗碗,河官问:“洗多少碗?有多少客?”妇女答:“洗只碗,客人二人.共用一只饭碗,三人共用一只汤碗,四人共用一只肉碗.问:有多少客人用餐?”请解答上述问题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形ABCD的边长为5,EBC边上运动,DE的中点G,EGE顺时针旋转90°EF,问CE为多少时A、C、F在一条直线上(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.

(1)求甲、乙两种笔记本的单价各是多少元?

(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠CAB90°,ABAC,点Ay轴上,BCx轴,点B.将△ABC绕点A顺时针旋转的△ABC′,当点B′落在x轴的正半轴上时,点C′的坐标为(  )

A.(﹣1B.(﹣1

C.(﹣+1D.(﹣1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A04),B70),C74),连接ACBC得到矩形AOBC,点D的边AC上,将边OA沿OD折叠,点A的对应边为A'.若点A'到矩形较长两对边的距离之比为13,则点A'的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,我们定义直线y=axa为抛物线y=ax2+bx+cabc为常数,a≠0)的梦想直线;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其梦想三角形

已知抛物线与其梦想直线交于AB两点(点A在点B的左侧),与x轴负半轴交于点C

1)填空:该抛物线的梦想直线的解析式为

2)如图,点M为线段CB上一动点,将ACMAM所在直线为对称轴翻折,点C的对称点为N,若AMN为该抛物线的梦想三角形,求点N的坐标;

3)当点E在抛物线的对称轴上运动时,在该抛物线的梦想直线上,是否存在点F,使得以点ACEF为顶点的四边形为平行四边形?若存在,请直接写出点EF的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某出租公司有若干辆同一型号的货车对外出租,每辆货车的日租金实行淡季、旺季两种价格标准,旺季每辆货车的日租金比淡季上涨.据统计,淡季该公司平均每天有辆货车未出租,日租金总收入为元;旺季所有的货车每天能全部租出,日租金总收入为元.

1)该出租公司这批对外出租的货车共有多少辆?淡季每辆货车的日租金多少元?

2)经市场调查发现,在旺季如果每辆货车的日租金每上涨元,每天租出去的货车就会减少辆,不考虑其它因素,每辆货车的日租金上涨多少元时,该出租公司的日租金总收入最高?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD外取一点E,连接AEBEDE.过点AAE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②B到直线AE的距离为;③EBED;④SAPD+SAPB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是

查看答案和解析>>

同步练习册答案