精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtABC中,∠ACB=90°,以AC为直径的⊙OAB边交于点D,过点D的切线交BC于点E.

(1)求证:DE=BC;

(2)若四边形ODEC是正方形,试判断△ABC的形状,并说明理由.

【答案】见解析

【解析】分析:(1)连接DO,先可证明EC为⊙O的切线,然后依据切线长定理可得到DE=EC,然后再证明∠1=B,从而得到EB=ED,从而可证明DE=BC.

(2)由四边形ODEC为正方形,可得到DE=OC=EC=OD,从而可得到AC=2OC,BC=2EC,从而得到BC=AC,故此可证明ABC是等腰直角三角形.

详解:(1)证明:连接DO,

∵∠ACB=90°,AC为直径,

EC为⊙O的切线.

又∵ED也为⊙O的切线,

EC=ED.

又∵∠EDO=90°

∴∠1+2=90°

∴∠1+A=90°.

又∵∠B+A=90°,

∴∠1=B,

EB=ED,

DE=BC.

(2)ABC是等腰直角三角形.

理由:∵四边形ODEC为正方形,

OD=DE=CE=OC,DOC=ACB=90°.

DE=BC,AC=2OC,

BC=AC,

∴△ABC是等腰直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两车分别从A、B两地同时出发,沿同一条公路相向而行,相遇时甲、乙所走路程的比为2:3,甲、乙两车离AB中点C路程y(千米)与甲车出发时间t(小时)的关系图象如图所示,则下列说法:①A、B两地之间的距离为180千米;乙车的速度为36千米/小时;③a=3.75;④当乙车到达终点时,甲车距离终点还有30千米.其中正确的结论有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC的面积为32,点D在线段AC上,点F在线段BC的延长线上,且BC=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为(  )

A. 8 B. 6 C. 4 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】己知:如图,EF分别是ABCDADBC边上的点,且AE=CF

1)求证:△ABE≌△CDF

2)若MN分别是BEDF的中点,连接MFEN,试判断四边形MFNE是怎样的四边形,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置,点A1,A2,A3和点C1,C2,C3分别在直线y=x+1x轴上,则点Bn的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形的对角线交于点,则下列不能判断四边形是平行四边形的条件是(

A.

B.=

C.=

D.=,∠=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,平面直角坐标系中,抛物线y=ax2+bx+3x轴的两个交点分别为A(﹣3,0),B(1,0),与y轴的交点为D,对称轴与抛物线交于点C,与x轴负半轴交于点H.

(1)求抛物线的表达式;

(2)点E,F分别是抛物线对称轴CH上的两个动点(点E在点F上方),且EF=1,求使四边形BDEF的周长最小时的点E,F坐标及最小值;

(3)如图2,点P为对称轴左侧,x轴上方的抛物线上的点,PQ⊥AC于点Q,是否存在这样的点P使△PCQ△ACH相似?若存在请求出点P的坐标,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,ABAC,点D在边BC所在的直线上,过点DDFAC交直线AB于点FDEAB交直线AC于点E,构造出平行四边形AEDF

1)若点D在线段BC上时. ①求证:FBFD.②求证:DEDFAC

2)点D在边BC所在的直线上,若AC8DE3,请作出简单示意图求DF的长度,不需要证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在梯形ABCD中,ADBCAD=6BC=16EBC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒3个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.

1)当运动时间t为多少秒时,PQCD

2)当运动时间t为多少秒时,以点PQED为顶点的四边形是平行四边形.

查看答案和解析>>

同步练习册答案