【题目】如图,在四边形ABCD中,∠BAD=25°,∠ADC=115°,O为AB的中点,以点O为圆心、AO长为半径作圆,恰好点D在⊙O上,连接OD,若∠EAD=25°,下列说法中不正确的是( )
A.D是劣弧 的中点
B.CD是⊙O的切线
C.AE∥OD
D.∠DOB=∠EAD
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点,与y轴交于C点,对称轴与抛物线相交于点M,与x轴相交于点N.点P是线段MN上的一动点,过点P作PE⊥CP交x轴于点E.
(1)直接写出抛物线的顶点M的坐标是 .
(2)当点E与点O(原点)重合时,求点P的坐标.
(3)点P从M运动到N的过程中,求动点E的运动的路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF=cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知;直线AB∥CD,直线MN分别与AB、CD交于点E、F.
(1)如图1,∠BEF和∠EFD的平分线交于点G.求∠G的度数;
(2)如图2,EI和EK为∠BEF内满足∠1=∠2的两条线,分别与∠EFD的平分线交于点I和K,猜想∠FIE和∠K的关系,并证明;
(3)如图3,点Q为线段EF(端点除外)上的一个动点,过点Q作EF的垂线交AB于R,交CD于J,∠AEF、∠CJR的平分线相交于P,问∠EPJ的度数是否会发生变化?若不发生变化,求出∠EPJ的度数;若会发生变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题原型:如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.过点D作△BCD的BC边上的高DE, 易证△ABC≌△BDE,从而得到△BCD的面积为 .
初步探究:如图②,在Rt△ABC中,∠ACB=90°,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.用含a的代数式表示△BCD的面积,并说明理由.
简单应用:如图③,在等腰三角形ABC中,AB=AC,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.直接写出△BCD的面积.(用含a的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,是的中线,为的中点,过点作与的延长线相交于点,连接.
(1)如图1,求证:四边形是平行四边形;
(2)如图2,若,请直接写出图中所有的等腰三角形,不需要证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P是线段AB上一点,C、D两点分别从P、B出发以1cm/s、2 cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)
(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:
(2)在(1)的条件下,Q是直线AB上一点,且AQ-BQ=PQ,求的值。
(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM-PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数,它的图象犹如老师的打钩,因此人们称它为对钩函数(的一支).下表是与的几组对应值:
x | … | 1 | 2 | 3 | 4 | … | |||
y | … | 4 | 3 | 2 | 2 | 2 | 3 | 4 | … |
请你根据学习函数的经验,利用上述表格所反映出的与之间的变化规律,对该函数的图象与性质进行探究.
(1)如图,在平面直角坐标系中,已描出了上表中各对对应值为坐标的点,请根据描出的点,画出该函数的图象;
(2)请根据图象写出该函数的一条性质: .
(3)当时,的取值范围为 ,则的取值范围为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直角梯形,,,过点作,垂足为点,,,点是边上的一动点,过作线段的垂直平分线,交于点,并交射线于点.
(1)如图1,当点与点重合时,求的长;
(2)设,,求与的函数关系式,并写出定义域;
(3)如图2,联结,当是等腰三角形时,求的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com