【题目】如图,抛物线y=﹣x2+bx+c(a≠0)与x轴交与A(1,0),B(﹣4,0)两点.
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上求出Q点的坐标使得△QAC的周长最小.
科目:初中数学 来源: 题型:
【题目】如图,C是的一定点,D是弦AB上的一定点,P是弦CB上的一动点.连接DP,将线段PD绕点P顺时针旋转得到线段.射线与交于点Q.已知,设P,C两点间的距离为xcm,P,D两点间的距离,P,Q两点的距离为.
小石根据学习函数的经验,分别对函数,,随自变量x的变化而变化的规律进行了探究,下面是小石的探究过程,请补充完整:
(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了,,与x的几组对应值:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
/cm | 4.29 | 3.33 | 1.65 | 1.22 | 1.0 | 2.24 | |
/cm | 0.88 | 2.84 | 3.57 | 4.04 | 4.17 | 3.20 | 0.98 |
(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数据所对应的点,,并画出函数,的图象;
(3)结合函数图象,解决问题:连接DQ,当△DPQ为等腰三角形时,PC的长度约为_____cm.(结果保留一位小数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小军参加东台国贸大厦庆“庆元旦翻牌抽奖”活动,背面完全相同的4张牌分别对应价值5,10,15,20(单位:元)的4件奖品.
(1)如果随机翻1张牌,那么抽中20元奖品的概率为 ;
(2)用列树状图或表格的方法求出如果随机翻2张牌,且第一次翻过的牌不再参加下次翻牌,求所获奖品总值不低于30元的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:.“解密世园会”、.“爱我家,爱园艺”、.“园艺小清新之旅”和.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.
(1)李欣选择线路.“园艺小清新之旅”的概率是多少?
(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,过⊙T外一点P引它的两条切线,切点分别为M,N,若,则称P为⊙T的环绕点.
(1)当⊙O半径为1时,
①在中,⊙O的环绕点是___________;
②直线y=2x+b与x轴交于点A,y轴交于点B,若线段AB上存在⊙O的环绕点,求b的取值范围;
(2)⊙T的半径为1,圆心为(0,t),以为圆心,为半径的所有圆构成图形H,若在图形H上存在⊙T的环绕点,直接写出t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用一段长为28m的铁丝网与一面长为8m的墙面围成一个矩形菜园,为了使菜园面积尽可能的大,给出了甲、乙两种围法,请通过计算来说明这个菜园长、宽各为多少时,面积最大?最大面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为6,E为BC的中点,将△ABE沿直线AE折叠后,点B落在点F处,AF交对角线BD于点G,则FG的长是___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c经过点(﹣1,0),对称轴是x=1,现有结论:①abc>0 ②9a﹣3b+c=0 ③b=﹣2a④(﹣1)b+c<0,其中正确的有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,抛物线y=﹣x2+x+与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D.
(1)求直线BC的解析式;
(2)如图2,点P为直线BC上方抛物线上一点,连接PB、PC.当△PBC的面积最大时,在线段BC上找一点E(不与B、C重合),使PE+BE的值最小,求点P的坐标和PE+BE的最小值;
(3)如图3,点G是线段CB的中点,将抛物线y=﹣x2+x+沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为F.在抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为直角三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com