精英家教网 > 初中数学 > 题目详情

【题目】解下列方程:
(1)2x2+3=7x;
(2)(x+4)2=5(x+4);
(3)x2﹣5x+1=0(用配方法);
(4)2x2﹣2 x﹣5=0.

【答案】
(1)解:2x2﹣7x+3=0,

∴(x﹣3)(2x﹣1)=0,

∴x﹣3=0或2x﹣1=0,

解得:x=3或x=


(2)解:∵(x+4)2﹣5(x+4)=0,

(x+4)(x﹣1)=0,

∴x+4=0或x﹣1=0,

解得:x=﹣4或x=1


(3)解:x2﹣5x=﹣1,

x2﹣5x+ =﹣1+

即(x﹣ 2=

∴x﹣

即x1= ,x2=


(4)解:2x2﹣2 x﹣5=0,

∵a=2,b=﹣2 ,c=﹣5,

∴△=8+4×2×5=48>0,

∴x= =


【解析】(1)因式分解法求解可得;(2)提取公因式法求解可得;(3)配方法求解即可得;(4)公式法求解可得.
【考点精析】本题主要考查了配方法和因式分解法的相关知识点,需要掌握左未右已先分离,二系化“1”是其次.一系折半再平方,两边同加没问题.左边分解右合并,直接开方去解题;已知未知先分离,因式分解是其次.调整系数等互反,和差积套恒等式.完全平方等常数,间接配方显优势才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠A=30°,BC=2 ,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市出租车计费方法如图所示,xkm)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:

1)出租车的起步价是多少元?当x3时,求y关于x的函数关系式.

2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程:
(1)2x2+3=7x;
(2)(x+4)2=5(x+4);
(3)x2﹣5x+1=0(用配方法);
(4)2x2﹣2 x﹣5=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.

(1)求A、B两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;
(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司为一工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).
(1)当每吨售价是240元时,计算此时的月销售量;
(2)求出y与x的函数关系式(不要求写出x的取值范围);
(3)该经销店要获得最大月利润,售价应定为每吨多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.

(1)求A、B两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;
(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买5千克这种苹果比分五次购买1千克这种苹果可节省(  )元.

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据题意解答
(1)解不等式组
(2)如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E,若∠CBF=20°,求∠ADE的度数.

查看答案和解析>>

同步练习册答案