精英家教网 > 初中数学 > 题目详情

【题目】已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是( )
A.
B.
C.
D.

【答案】C
【解析】解:∵点A(﹣1,m),B(1,m),

∴A与B关于y轴对称,故A,B错误;

∵B(1,m),C(2,m+1),

∴当x>0时,y随x的增大而增大,故C正确,D错误.

所以答案是:C.

【考点精析】通过灵活运用坐标确定位置和函数的图象,掌握对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标;函数的图像是由直角坐标系中的一系列点组成;图像上每一点坐标(x,y)代表了函数的一对对应值,他的横坐标x表示自变量的某个值,纵坐标y表示与它对应的函数值即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线AB、CD相交于点O,OE把∠BOD分成两部分;

(1)直接写出图中∠AOC的对顶角为   ,∠BOE的邻补角为   

(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察一列数:124816我们发现,这一列数从第二项起,每一项与它前一项的比都等于2.一般地,如果一列数从第二项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数就叫做等比数列的公比.

(1)等比数列3-1248的第4项是______

(2)如果一列数a1a2a3a4是等比数列,且公比为q.那么有:a2=a1qa3=a2q=(a1q)q=a1q2a4=a3q=(a1q2)q=a1q3,则a5=_______an=______(a1q的式子表示)

(3)一个等比数列的第2项是9,第4项是36,求它的公比.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,△ABC是等边三角形,四边形BDEF是菱形,其中线段DF的长与DB相等,将菱形BDEF绕点B按顺时针方向旋转,甲、乙两位同学发现在此旋转过程中,有如下结论.
甲:线段AF与线段CD的长度总相等;
乙:直线AF和直线CD所夹的锐角的度数不变;
那么,你认为( )

A.甲、乙都对
B.乙对甲不对
C.甲对乙不对
D.甲、乙都不对

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落在点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则△EB′C的周长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列内容,并答题:我们知道,计算n边形的对角线条数公式为: n(n﹣3).
如果一个n边形共有20条对角线,那么可以得到方程
整理得n2﹣3n﹣40=0;解得n=8或n=﹣5
∵n为大于等于3的整数,∴n=﹣5不合题意,舍去.
∴n=8,即多边形是八边形.
根据以上内容,问:
(1)若一个多边形共有14条对角线,求这个多边形的边数;
(2)A同学说:“我求得一个多边形共有10条对角线”,你认为A同学说法正确吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一方有难八方支援,某市政府筹集了抗旱必需物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)

车型

汽车运载量(吨/辆)

汽车运费(元/辆)

1)若全部物资都用甲、乙两种车型来运送,需运费元,问分别需甲、乙两种车型各几辆?

2)为了节约运费,该市政府可以调用甲、乙、丙三种车型参与运送,已知他们的总辆数为辆,你能通过列方程组的方法分别求出几种车型的辆数吗?

3)求出哪种方案的运费最省?最省是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境

1)如图①,已知,试探究直线有怎样的位置关系?并说明理由.

小明给出下面正确的解法:

直线的位置关系是

理由如下:

过点(如图②所示)

所以(依据1

因为(已知)

所以

所以

所以(依据2

因为

所以(依据3

交流反思

上述解答过程中的依据1”依据2”依据3”分别指什么?

依据1”________________________________

依据2”________________________________

依据3”________________________________

类比探究

2)如图,当满足条件________时,有

拓展延伸

3)如图,当满足条件_________时,有

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,AF平分∠CAB,交CD于点E,交BC于点F,若AF=BF,求证:△CEF是等边三角形.

查看答案和解析>>

同步练习册答案