【题目】问题情境
(1)如图①,已知,试探究直线与有怎样的位置关系?并说明理由.
小明给出下面正确的解法:
直线与的位置关系是.
理由如下:
过点作(如图②所示)
所以(依据1)
因为(已知)
所以
所以
所以(依据2)
因为
所以(依据3)
交流反思
上述解答过程中的“依据1”,“依据2”,“依据3”分别指什么?
“依据1”:________________________________;
“依据2”:________________________________;
“依据3”:________________________________.
类比探究
(2)如图,当、、、满足条件________时,有.
拓展延伸
(3)如图,当、、、满足条件_________时,有.
【答案】(1)两直线平行,同旁内角互补;同旁内角互补,两直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)∠B+∠E+∠F+∠D=540°;(3)∠B+∠E+∠D-∠F=180°.
【解析】
(1)根据平行线的性质和判定,平行公理的推论回答即可;
(2)过点E、F分别作GE∥HF∥CD,根据两直线平行,同旁内角互补及已知条件求得同旁内角∠ABE+∠BEG=180°,得到AB∥GE,再根据平行线的传递性来证得AB∥CD;
(3)过点E、F分别作ME∥FN∥CD,根据两直线平行,内错角相等及已知条件求得同旁内角∠B+∠BEM=180°,得到AB∥ME,再根据平行线的传递性来证得AB∥CD.
解:(1)由题意可知:“依据1”:两直线平行,同旁内角互补;
“依据2”: 同旁内角互补,两直线平行;
“依据3”: 如果两条直线都与第三条直线平行,那么这两条直线也互相平行;
(2)当∠B、∠E、∠F、∠D满足条件∠B+∠E+∠F+∠D=540°时,有AB∥CD.
理由:如图,过点E、F分别作GE∥HF∥CD,
则∠GEF+∠EFH=180°,∠HFD+∠CDF=180°,
∴∠GEF+∠EFD+∠FDC=360°;
又∵∠B+∠BEF+∠EFD+∠D=540°,
∴∠ABE+∠BEG=180°,
∴AB∥GE,
∴AB∥CD;
(3)当∠B、∠E、∠F、∠D满足条件∠B+∠E+∠D-∠F=180°时,有AB∥CD.
如图,过点E、F分别作ME∥FN∥CD,
则∠MEF=EFN,∠D=∠DFN,
∵∠B+∠BEF+∠D-∠EFD=180°,
∴∠B+∠BEM+∠MEF+∠D-∠EFN-∠DFN=180°,
∴∠B+∠BEM=180°,
∴AB∥ME,
∴AB∥CD.
科目:初中数学 来源: 题型:
【题目】如图所示,在四边形ABCD中,已知AB与 CD不平行,∠ABD=∠ACD,请你添加一个条件:______ ,使的加上这个条件后能够推出AD∥BC ,且AB=CD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,B、D为线段AH上两点,△ABC、△BDE和△DGH都是等边三角形,连结CE并延长交AH的延长线于点F,点G恰好在CF上,△ABC的外接圆⊙O交CF于点M.
(1)求证:AC 2=CMCF;
(2)若CM= ,MF= ,求圆O的半径长;
(3)设等边△ABC、△BDE、△DGH的面积分别为S1、S2、S3 , 请直接写出S1、S2、S3之间的等量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AD平分∠BAC,
(1)图①中,已知AF⊥BC , ∠B=500,∠C=600. 求∠DAF的度数.
(2)图②中,请你在直线AD上任意取一点E(不与点A、D重合),画EF⊥BC,垂足为F.已知∠B=α,∠C=β(β>a).求∠DEF的度数. (用α、β的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列四幅图象近似刻画两个变量之间的关系,请按图象顺序将下面四种情景与之对应排序( ).
①一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系)
②向锥形瓶中匀速注水(水面的高度与注水时间的关系)
③将常温下的温度计插入一杯热水中(温度计的读数与时间的关系)
④一杯越来越凉的水(水温与时间的关系)
A.①②④③ B.③④②①
C.①④②③ D.③②④①
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我省教育厅下发了在全省中小学幼儿园广泛开展节约教育的通知,通知中要求各学校全面持续开展“光盘行动”深圳市教育局督导组为了调查学生对“节约教育”内容的了解程度程度分为:“A:了解很多”、“B:了解较多”、“C:了解较少”、“D:不了解”,对本市某所中学的学生进行了抽样调查我们将这次调查的结果绘制了以下两幅不完整统计图:
根据以上信息,解答下列问题:
补全条形统计图;
本次抽样调查了______名学生;在扇形统计图中,求出“D”的部分所对应的圆心角度数.
若该中学共有2000名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较少”的有多少人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上,另一个顶
点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图(3),
则三角板的最大边的长为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AC,BD为对角线,AB=BC=AC=BD,则∠ADC的大小为( )
A. 120°B. 135°C. 145°D. 150°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com