【题目】如图,将边长为4的正方形纸片ABCD折叠,使得点A落在边CD的中点E处,折痕为FG,点F、G分别在边AD、BC上,则折痕FG的长度为_____.
【答案】2.
【解析】
过点G作GH⊥AD于H,根据翻折变换的性质可得GF⊥AE,然后求出∠GFH=∠D,再利用“角角边”证明△ADE和△GHF全等,根据全等三角形对应边相等可得GF=AE,再利用勾股定理列式求出AE,从而得解.
如图,过点G作GH⊥AD于H,
则四边形ABGH中,HG=AB,
由翻折变换的性质得GF⊥AE,
∵∠AFG+∠DAE=90°,∠AED+∠DAE=90°,
∴∠AFG=∠AED,
∵四边形ABCD是正方形,
∴AD=AB,
∴HG=AD,
在△ADE和△GHF中,
,
∴△ADE≌△GHF(AAS),
∴GF=AE,
∵点E是CD的中点,
∴DE=CD=2,
在Rt△ADE中,由勾股定理得,AE=,
∴GF的长为2.
故答案为:2.
科目:初中数学 来源: 题型:
【题目】如图,已知直线l1∥l2∥l3∥l4,相邻两条平行线间的距离都是1,正方形ABCD的四个顶点分别在四条直线上,则正方形ABCD的面积为
A. B. 5C. 3D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线交轴于、两点,交轴于点,点坐标为,以为直径作,与抛物线交于轴上同一点,连接、.
(1)求抛物线的解析式;
(2)点是延长线上一点,的平分线交于点,连接,求直线的解析式;
(3)在(2)的条件下,抛物线上是否存在点,使得?若存在,求出点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AB=10,BC=6.点P从点A出发,沿折线AB—BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动.点Q从点C出发,沿CA方向以每秒2个单位长度的速度运动.点P、Q两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.
(1)求线段AC的长.
(2)求线段BP的长.(用含t的代数式表示)
(3)设△APQ的面积为S,求S与t之间的函数关系式.
(4)连结PQ,当PQ与△ABC的一边平行或垂直时,直接写出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,点是线段上的动点,将线段绕点顺时针旋转至,连接.已知,设为,为.
小明根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究,下面是小明的探究过程.请补充完整(说明:解答中所填数值均保留一位小数)
(1)通过取点、画图、测量,得到了与的几组值,如下表:
0 | 0.5 | 0.7 | 1.0 | 1.5 | 2.0 | 2.3 | |
1.7 | 1.3 | 1.1 | 0.7 | 0.9 | 1.1 |
的值约为____________;
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图像.
(3)结合画出的函数图像,解决问题:
①线段的长度的最小值约为____________;
②,则的长度的取值范围是____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平行四边形ABCD中,点E是AD边上一点,连接CE,交对角线BD于点F,过点A作AB的垂线交BD的延长线于点G,过B作BH垂直于CE,垂足为点H,交CD于点P,2∠1+∠2=90°.
(1)若PH=2,BH=4,求PC的长;
(2)若BC=FC,求证:GF=PC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点D是BC边上的中点,连接AD.
(1)在AB边上求作一点O,使得以O为圆心,OB长为半径的圆与AD相切;(不写作法,保留作图痕迹)
(2)设⊙O与AD相切于点M,已知BD=8,DM=4,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是半圆O的直径,点C在半圆O上,AB=4cm,∠CAB=60°,P是弧上的一个动点,连接AP,过C点作CD⊥AP于D,连接BD,在点P移动的过程中,BD的最小值是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com