【题目】如图,△ABC为等边三角形,将一个直角三角形60°角的顶点与点C重合,再将三角形绕点C按顺时针方向旋转(旋转角大于0°且小于30°).旋转后三角形的一直角边与AB交于点D,在直角三角形斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接EF.
(1)求∠EAF的度数;
(2)DE与EF相等吗?请说明理由.
【答案】(1)120°;(2)DE=EF,理由见解析
【解析】
由等边三角形的性质得出,,求出,可依据SAS证明≌,得出,求出;
证出,由SAS证明≌,得出即可.
解:(1)∵△ABC是等边三角形,
∴AC=BC,∠ACB=∠BAC=∠B=60°,
又∵∠DCF=60°,
∴∠DCF=∠ACB,
∴∠DCF-∠ACD=∠ACB-∠ACD,
∴∠ACF=∠BCD,
在△ACF和△BCD中,
,
∴△ACF≌△BCD(SAS),
∴∠CAF=∠B=60°,
∴∠EAF=∠BAC+∠CAF=120°;
(2)DE=EF,理由如下:
∵∠DCF=60°,∠DCE=30°,
∴∠FCE=60°﹣30°=30°,
∴∠DCE=∠FCE,
在△DCE和△FCE中,
,
∴△DCE≌△FCE(SAS),
∴DE=EF.
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为2,点E是BC的中点,AE与BD交于点P,F是CD上一点,连接AF分别交BD,DE于点M,N,且AF⊥DE,连接PN,则以下结论中:①F为CD的中点;②3AM=2DE;③tan∠EAF=;④;⑤△PMN∽△DPE,正确的结论个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了维护海洋权益,新组建的国家海洋局加大了在南海的巡逻力度。一天,我两艘海监船刚好在我某岛东西海岸线上的A、B两处巡逻,同时发现一艘不明国籍的船只停在C处海域。如图所示,AB=60海里,在B处测得C在北偏东45的方向上,A处测得C在北偏西30的方向上,在海岸线AB上有一灯塔D,测得AD=120海里。
(1)分别求出A与C及B与C的距离AC,BC(结果保留根号)
(2)已知在灯塔D周围100海里范围内有暗礁群,我在A处海监船沿AC前往C处盘查,途中有无触礁的危险?
(参考数据:=1.41,=1.73,=2.45)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数图像的一部分,图像过点 A(-3,0)顶点坐标为(-1,n)给出以下结论(1)abc<0;(2)b2-4ac>0 ;(3)当时,;(4)若 B(- ,y1 ), C (- , y2)为函数图像上的两点,则;(5)方程有两个不相等的实数根.其中正确的有( )
A.2 个B.3 个C.4 个D.5 个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】国家为支持大学生创业,提供小额无息贷款,学生王芳享受政策无息贷款元用来代理品牌服装的销售.已知该品牌服装进价每件元,日销售(件)与销售价(元/件)之间的关系如图所示(实线),每天付员工的工资每人每天元,每天应支付其它费用元.
求日销售(件)与销售价(元/件)之间的函数关系式;
若暂不考虑还贷,当某天的销售价为元/件时,收支恰好平衡(收入支出),求该店员工人数;
若该店只有名员工,则该店至少需要多少天才能还清贷款,此时,每件服装的价格应定为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴相交于A,B两点,与y轴相交于点C.点D是直线AC上方抛物线上一点,过点D作y轴的平行线,与直线AC相交于点E.
(1)求直线AC的解析式;
(2)当线段DE的长度最大时,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中华文明,源远流长,中华汉字,寓意深广.为传承中华优秀传统文化,某中学德育处组织了一次全校2000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,学校德育处随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:
成绩x(分)分数段 | 频数(人) | 频率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | 0.2 |
80≤x<90 | m | 0.35 |
90≤x<100 | 50 | n |
频数分布直方图
根据所给的信息,回答下列问题:
(1)m=________;n=________;
(2)补全频数分布直方图;
(3)这200名学生成绩的中位数会落在________分数段;
(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的2000名学生中成绩是“优”等的约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:在线段MN上存在点P、Q将线段MN分为相等的三部分,则称P、Q为线段MN的三等分点.
已知一次函数y=﹣x+3的图象与x、y轴分别交于点M、N,且A、C为线段MN的三等分点(点A在点C的左边).
(1)直接写出点A、C的坐标;
(2)①二次函数的图象恰好经过点O、A、C,试求此二次函数的解析式;
②过点A、C分别作AB、CD垂直x轴于B、D两点,在此抛物线O、C之间取一点P(点P不与O、C重合)作PF⊥x轴于点F,PF交OC于点E,是否存在点P使得AP=BE?若存在,求出点P的坐标?若不存在,试说明理由;
(3)在(2)的条件下,将△OAB沿AC方向移动到△O'A'B'(点A'在线段AC上,且不与C重合),△O'A'B'与△OCD重叠部分的面积为S,试求当S=时点A'的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某景区内有一块矩形油菜花田地(数据如图示,单位:m.)现在其中修建一条观花道(图中阴影部分)供游人赏花.设改造后剩余油菜花地所占面积为ym2.
(1)求y与x的函数表达式;
(2)若改造后观花道的面积为13m2,求x的值;
(3)若要求 0.5≤ x ≤1,求改造后剩余油菜花地所占面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com