精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC为等边三角形,将一个直角三角形60°角的顶点与点C重合,再将三角形绕点C按顺时针方向旋转(旋转角大于且小于30°).旋转后三角形的一直角边与AB交于点D,在直角三角形斜边上取一点F,使CFCD,线段AB上取点E,使∠DCE30°,连接EF

1)求∠EAF的度数;

2DEEF相等吗?请说明理由.

【答案】1120°;(2DE=EF,理由见解析

【解析】

由等边三角形的性质得出,求出,可依据SAS证明,得出,求出

证出,由SAS证明,得出即可.

解:(1)∵△ABC是等边三角形,

AC=BC,∠ACB=∠BAC=∠B=60°

又∵∠DCF=60°

∴∠DCF=∠ACB

∴∠DCF-∠ACD=∠ACB-∠ACD

∴∠ACF=∠BCD

在△ACF和△BCD中,

∴△ACF≌△BCDSAS),

∴∠CAF=∠B60°

∴∠EAF=∠BAC+CAF120°

2DEEF,理由如下:

∵∠DCF60°,∠DCE30°

∴∠FCE60°30°30°

∴∠DCE=∠FCE

在△DCE和△FCE中,

∴△DCE≌△FCESAS),

DEEF

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为2,点EBC的中点,AEBD交于点PFCD上一点,连接AF分别交BDDE于点MN,且AFDE,连接PN,则以下结论中:①FCD的中点;②3AM=2DE;③tanEAF;④;⑤△PMN∽△DPE,正确的结论个数是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了维护海洋权益,新组建的国家海洋局加大了在南海的巡逻力度。一天,我两艘海监船刚好在我某岛东西海岸线上的A、B两处巡逻,同时发现一艘不明国籍的船只停在C处海域。如图所示,AB=60海里,在B处测得C在北偏东45的方向上,A处测得C在北偏西30的方向上,在海岸线AB上有一灯塔D,测得AD=120海里。

(1)分别求出A与C及B与C的距离AC,BC(结果保留根号)

(2)已知在灯塔D周围100海里范围内有暗礁群,我在A处海监船沿AC前往C处盘查,途中有无触礁的危险?                         

(参考数据:=1.41,=1.73,=2.45)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数图像的一部分,图像过点 A-30)顶点坐标为(-1n)给出以下结论(1abc0;(2b2-4ac0 ;(3)当时,;(4)若 B- y1 , C (- , y2)为函数图像上的两点,则;(5)方程有两个不相等的实数根.其中正确的有(

A.2 B.3 C.4 D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国家为支持大学生创业,提供小额无息贷款,学生王芳享受政策无息贷款元用来代理品牌服装的销售.已知该品牌服装进价每件元,日销售(件)与销售价(元/件)之间的关系如图所示(实线),每天付员工的工资每人每天元,每天应支付其它费用元.

求日销售(件)与销售价(元/件)之间的函数关系式;

若暂不考虑还贷,当某天的销售价为/件时,收支恰好平衡(收入支出),求该店员工人数;

若该店只有名员工,则该店至少需要多少天才能还清贷款,此时,每件服装的价格应定为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线x轴相交于AB两点,与y轴相交于点CD是直线AC上方抛物线上一点,过点Dy轴的平行线,与直线AC相交于点E

1)求直线AC的解析式;

2)当线段DE的长度最大时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中华文明,源远流长,中华汉字,寓意深广.为传承中华优秀传统文化,某中学德育处组织了一次全校2000名学生参加的汉字听写大赛.为了解本次大赛的成绩,学校德育处随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:

成绩x(分)分数段

频数(人)

频率

50≤x<60

10

0.05

60≤x<70

30

0.15

70≤x<80

40

0.2

80≤x<90

m

0.35

90≤x<100

50

n

频数分布直方图

根据所给的信息,回答下列问题:

1m=________n=________

2)补全频数分布直方图;

3)这200名学生成绩的中位数会落在________分数段;

4)若成绩在90分以上(包括90分)为等,请你估计该校参加本次比赛的2000名学生中成绩是等的约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:在线段MN上存在点PQ将线段MN分为相等的三部分,则称PQ为线段MN的三等分点.

已知一次函数y=﹣x+3的图象与xy轴分别交于点MN,且AC为线段MN的三等分点(点A在点C的左边).

1)直接写出点AC的坐标;

2)①二次函数的图象恰好经过点OAC,试求此二次函数的解析式;

②过点AC分别作ABCD垂直x轴于BD两点,在此抛物线OC之间取一点P(点P不与OC重合)作PFx轴于点FPFOC于点E,是否存在点P使得APBE?若存在,求出点P的坐标?若不存在,试说明理由;

3)在(2)的条件下,将OAB沿AC方向移动到O'A'B'(点A'在线段AC上,且不与C重合),O'A'B'OCD重叠部分的面积为S,试求当S时点A'的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某景区内有一块矩形油菜花田地(数据如图示,单位:m.)现在其中修建一条观花道(图中阴影部分)供游人赏花.设改造后剩余油菜花地所占面积为ym2.

(1)yx的函数表达式;

(2)若改造后观花道的面积为13m2,求x的值;

(3)若要求 0.5≤ x ≤1,求改造后剩余油菜花地所占面积的最大值.

查看答案和解析>>

同步练习册答案