【题目】在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,如图,则∠EAB是多少度?
【答案】35°.
【解析】
过点E作AD的垂线,垂足为F,根据∠DFE=∠C=90°,DE平分∠ADC,可证△DCE≌△DFE,可得∠DEC=∠DEF,EC=EF,又已知EC=EB,可得EF=EB,且∠B=∠EFA=90°,可证△AFE≌ABE,可知∠FEA=∠BEA,又∠DEC+∠DEF+∠FEA+∠BEA=180°,从而可得∠AED=90°再利用互余关系证明∠EAB=∠CED.
解:过点E作AD的垂线,垂足为F,
∵∠DFE=∠C=90°,DE平分∠ADC,DE=DE,
∴△DCE≌△DFE(AAS),
∴∠DEC=∠DEF,EC=EF,
又∵EC=EB,则EF=EB,且∠B=∠EFA=90°,AE=AE,
∴△AFE≌△ABE(HL),
∴∠FEA=∠BEA,
又∵∠DEC+∠DEF+∠FEA+∠BEA=180°,
∴∠AED=90°,
∴∠CED+∠BEA=90°,
又∠EAB+∠BEA=90°,
∴∠EAB=∠CED=35°.
科目:初中数学 来源: 题型:
【题目】(1)已知关于x的方程kx=11﹣2x有整数解,则负整数k的值为 .
(2)若a+b+c=0,且a>b>c,以下结论:
①a>0,c>0;
②关于x的方程ax+b+c=0的解为x=1;
③a2=(b+c)2;
④的值为0或2;
⑤在数轴上点A、B、C表示数a、b、c,若b<0,则线段AB与线段BC的大小关系是AB>BC.
其中正确的结论是 (填写正确结论的序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与x轴交于点,直线与x轴、y轴分别交于B、C两点,并与直线相交于点D,若.
求点D的坐标;
求出四边形AOCD的面积;
若E为x轴上一点,且为等腰三角形,写出点E的坐标直接写出答案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,直线AB与x、y轴分别交于点A(4,0)、B(0, )两点,∠BAO的角平分线交y轴于点D,点C为直线AB上一点以AC为直径的⊙G经过点D,且与x轴交于另一点E.
(1)求证:y轴是⊙G的切线.
(2)求出⊙G的半径;
(3)连结EC,求△ACE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,给出五个等量关系:①AD=BC ②AC=BD ③CE=DE ④∠D=∠C ⑤∠DAB=∠CBA.请你以其中两个为条件,另三个中的一个为结论,推出一个正确的结论(只需写出一种情况),并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某河道A,B两个码头之间有客轮和货轮通行一天,客轮从A码头匀速行驶到B码头,同时货轮从
B码头出发,运送一批建材匀速行驶到A码头两船距B码头的距离千米与行驶时间分之间的函数关系
如图所示请根据图象解决下列问题:
分别求客轮和货轮距B码头的距离千米、千米与分之间的函数关系式;
求点M的坐标,并写出该点坐标表示的实际意义.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数轴上线段AB=4(单位长度),CD=6(单位长度),点A在数轴上表示的数是-16,点C在数轴上表示的数是18
(1) 点B在数轴上表示的数是多少,点D在数轴上表示的数是多少,线段AD等于 多少;
(2) 若线段AB以4个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动,设运动时间为t秒
①若BC=6(单位长度),求t的值
②当0<t<5时,设M为AC中点,N为BD中点,求线段MN的长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为24厘米.甲、乙两动点同时从顶点A出发,甲以2厘米/秒的速度沿正方形的边按顺时针方向移动,乙以4厘米/秒的速度沿正方形的边按逆时针方向移动,每次相遇后甲乙的速度均增加1厘米/秒且都改变原方向移动,则第四次相遇时甲与最近顶点的距离是______厘米.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com