精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,AB=AC,ABD和△ACE分别是以AB、AC为斜边的等腰直角三角形,BE、CD相交于点F.求证:AFBC.

【答案】见解析

【解析】

先证明△ABD≌△ACE,从而有DB=CE,接着证明△DBC≌△ECB,从而∠DCB=∠EBC,所以FB=FC,所以FBC的垂直平分线上,另A点在BC垂直平分线上,所以AF⊥BC.

证:在△ABD和△ACE中,

∵AB=AC,∠ABD=∠ACE,DB=EC,

∴△ABD≌△ACE.

∴DB=EC.

在△DBC和△ECB中,

∵DB=EC,∠DBC=∠ECB,BC=CB,

∴△DBC≌△ECB.

∴∠DCB=∠EBC,

∴FB=FC.

∴FBC的垂直平分线上.

又∵另A点在BC垂直平分线上,

∴AF⊥BC.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读材料:

小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如.善于思考的小明进行了以下探索:

(其中a、b、m、n均为整数),则有.

.这样小明就找到了一种把类似的式子化为平方式的方法。

请你仿照小明的方法探索并解决下列问题:(a,b,m,n均为正整数)

(1),用含m、n的式子分别表示a、b,得:a=___,b=___;

(2)当a=7,n=1时,填空:7+ =( +2

(3)若,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明要测量河内小岛B到河边公路AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=50米,求小岛B到公路AD的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(a,b),B(c,0),|a-3|+(2b-c)2+=0.

(1)求点A,B的坐标

(2)如图,点Cx轴正半轴上一点,且OC=OA,点DOC的中点,连AC,AD,请探索AD+CDAC之间的大小关系,并说明理由;

(3)如图,过点AAE⊥y轴于E,Fx轴负半轴上一动点不与(-3,0)重合 ),GEF延长线上,以EG为一边作∠GEN=45°,过AAM⊥x轴,交EN于点M,连FM,当点Fx轴负半轴上移动时,式子的值是否发生变化?若变化,求出变化的范围;若不变化,请求出其值并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=2x与反比例函数y= (k≠0,x>0)的图象交于点A(1,a),B是反比例函数图象上一点,直线OB与x轴的夹角为α,tanα=

(1)求k的值.
(2)求点B的坐标.
(3)设点P(m,0),使△PAB的面积为2,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠BAC=90°.如果将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处.那么旋转的角度等于( )

A.55°
B.60°
C.65°
D.80°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在△ABC,∠BAC=90°,AC=ABDBC边上的一个动点D不与BC重合),AD为边作等腰直角△ADE,∠DAE=90°,连接CE

(1)求证:△ABDACE

(2)试猜想线段BDCDDE之间的等量关系并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c).

(1)用这样的两个三角形构造成如图(2)的图形(B,E,C三点在一条直线上),利用这个图形,求证:

(2)a=1,b=2时,将其中一个直角三角形放入平面直角坐标系中(如图(3)),使直角顶点与原点重合,两直角边a,b分别与x轴、y轴重合.请在坐标轴上找一点C,使ABC为等腰三角形.

①写出一个满足条件的在x轴上的点的坐标:

②写出一个满足条件的在y轴上的点的坐标:

③满足条件的在y轴上的点共有

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:

售价(元/件)

100

110

120

130

月销量(件)

200

180

160

140

已知该运动服的进价为每件60元,设售价为x元.
(1)请用含x的式子表示:
①销售该运动服每件的利润是 ()元;
②月销量是 ()件;(直接写出结果)
(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?
(3)若销售该运动服所得的月利润不低于8000元,请确定售价x的取值范围.

查看答案和解析>>

同步练习册答案