【题目】如图1,P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于
点D.
(1)证明:PD=DQ.
(2)如图2,过P作PE⊥AC于E,若AB=2,求DE的长.
【答案】答案见解析.
【解析】
(1)利用平行线的性质结合全等三角形的判定与性质得出即可;
(2)过P作PF∥BC交AC于F,得出等边三角形APF,推出AP=PF=QC,根据等腰三角形性质求出EF=AE,证△PFD≌△QCD,推出FD=CD,推出DE= AC即可.
证明:如图1,过点P作PF∥BC交AC于点F;
∵PF∥BC,
∴△APF∽△ABC,
又∵△ABC是等边三角形,
∴△APF是等边三角形,
∴∠APF=∠BCA=60°,AP=PF=AF=CQ,
∴∠FDP=∠DCQ,∠FDP=∠CDQ,
∵在△PDF和△QDC中,
∴△PDF≌△QDC(AAS),
∴PD=DQ;
(2)解:如图2,过P作PF∥BC交AC于F.
∵PF∥BC,△ABC是等边三角形,
∴∠PFD=∠QCD,△APF是等边三角形,
∴AP=PF=AF,
∵PE⊥AC,
∴AE=EF,
∵AP=PF,AP=CQ,
∴PF=CQ.
由(1)可知∴△PFD≌△QCD(AAS),
∴FD=CD,
∵AE=EF,
∴EF+FD=AE+CD,∴AE+CD=DE= AC,又∵AC=2,
∴DE=1.
科目:初中数学 来源: 题型:
【题目】我们定义:如图1,在中,把AB绕点A顺时针旋转得到,把AC绕点A逆时针旋转得到,连接当时,我们称是的“旋补三角形”, 边上的中线AD叫做的“旋补中线”,点A叫做“旋补中心”.
特例感知:
在图2,图3中,是的“旋补三角形”,AD是的“旋补中线”.
如图2,当为等边三角形时,AD与BC的数量关系为______BC;
如图3,当,时,则AD长为______.
猜想论证:
在图1中,当为任意三角形时,猜想AD与BC的数量关系,并给予证明.
拓展应用
如图4,在四边形ABCD,,,,,在四边形内部是否存在点P,使是的“旋补三角形”?若存在,给予证明,并求的“旋补中线”长;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知函数y=x与反比例函数y= (x>0)的图象交于点A.将y=x的图象向下移6个单位后与双曲线y=交于点B,与x轴交于点C.
(1)求点C的坐标;
(2)若=2,求反比例函数的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,点D,E,F分别是△ABC边AB,BC,AC的中点,连接DE,EF,要使四边形ADEF是正方形,还需增加条件:_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E是矩形ABCD的边AD上一点,且BE=ED,P是对角线BD上任一点,PF⊥BE,PG⊥AD,垂足分别为F,G,求证:PF+PG=AB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②AF
∥EB;③∠FAN=∠EAM;④△ACN≌△ABM其中正确的有 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,已知于点D,AE平分
(1)试探究与的关系;
(2)若F是AE上一动点,当F移动到AE之间的位置时,,如图2所示,此时的关系如何?
(3)若F是AE上一动点,当F继续移动到AE的延长线上时,如图3,,①中的结论是否还成立?如果成立请说明理由,如果不成立,写出新的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,
(1)若∠ABC=30°,∠ACB=50°,求∠DAE的度数
(2)写出∠DAE与∠C-∠B的数量关系,并证明你的结论
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AC﹣AB=2BE中正确的是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com