【题目】如图,正方形中,,分别在边,上,,相交于点,若,,则的值是_________;若,,则的值是_________.
【答案】
【解析】
过F作FN∥AD交AB于N,交BE于M,利用平行线分线段成比例定理解答即可.
过F作FN∥AD交AB于N,交BE于M,
∵四边形ABCD是正方形,
∴AB∥CD,∵FN∥AD,
∴四边形ANFD是平行四边形,
∵∠D=90,
∴四边形ANFD是矩形,
若AE=ED,设AE=ED=a,则AD=DC=AB=NF=2a,
∵DF=FC,
∴AN=DF=BN=a,又MN∥AE,
∴BM=ME,
∴MN==a,MF=NF-MN=a,
∵AE∥MF,
∴;
若AE=3ED,设ED=m,则AE=3m,AD=AB=CD=FN=4m,AN=DF=2m,
同理证得:MN=m,MF=m,
由AE//FM得:
,
故答案为:;.
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠B=45°,BC=4,BC边上的高AD=1,点P1、Q1、H1分别在边AD、AC、CD上,且四边形P1Q1H1D为正方形,点P2、Q2、H2分别在边Q1H1、CQ1、CH1上,且四边形P2Q2H2H1为正方形,…,按此规律操作下去,则线段CQ2020的长度为________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:若一次函数y=ax+b和反比例函数y=-满足a+c=2b,则称为y=ax2+bx+c为一次函数和反比例函数的“等差”函数.
(1)判断y=x+b和y=-是否存在“等差”函数?若存在,写出它们的“等差”函数;
(2)若y=5x+b和y=-存在“等差”函数,且“等差”函数的图象与y=-的图象的一个交点的横坐标为1,求一次函数和反比例函数的表达式;
(3)若一次函数y=ax+b和反比例函数y=-(其中a>0,c>0,a=b)存在“等差”函数,且y=ax+b与“等差”函数有两个交点A(x1,y1)、B(x2,y2),试判断“等差”函数图象上是否存在一点P(x,y)(其中x1<x<x2),使得△ABP的面积最大?若存在,用c表示△ABP的面积的最大值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“安全教育”是学校必须开展的一项重要工作.某校为了了解家长和学生参与“暑期安全知识学习”的情况,进行了网上测试,并在本校学生中随机抽取部分学生进行调查.若把参与测试的情况分为类情形:.仅学生自己参与;.家长和学生一起参与;.仅家长自己参与;.家长和学生都未参与.根据调查情况,绘制了以下不完整的统计图.请根据图中提供的信息,解答下列问题:
在这次抽样调查中,共调查了 名学生;
补全条形统计图,并计算扇形统计图中类所对应扇形的圆心角的度数;
根据抽样调查结果,估计该校名学生中“家长和学生都未参与”的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A(﹣3,y1),B(2,y2)均在抛物线y=ax2+bx+c上,点P(m,n)是该抛物线的顶点,若y1>y2≥n,则m的取值范围是( )
A.﹣3<m<2B.﹣<m<-C.m>﹣D.m>2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,与恰好为对顶角,,连接,,点F是线段上一点.
探究发现:
(1)当点F为线段的中点时,连接(如图(2),小明经过探究,得到结论:.你认为此结论是否成立?_________.(填“是”或“否”)
拓展延伸:
(2)将(1)中的条件与结论互换,即:若,则点F为线段的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.
问题解决:
(3)若,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为做好疫情宣传巡查工作,各地积极借助科技手段加大防控力度.如图,亮亮在外出期间被无人机隔空喊话“戴上口罩,赶紧回家”.据测量,无人机与亮亮的水平距离是15米,当他抬头仰视无人机时,仰角恰好为,若亮亮身高1.70米,则无人机距离地面的高度约为________米.(结果精确到0.1米,参考数据:,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在扇形中,圆心角,半径.
(1)如图1,过点作,交弧于点,再过点作于点,则的长为_________,的度数为_________;
(2)如图2,设点为弧上的动点,过点作于点,于点,点分别在半径,上,连接,则
①求点运动的路径长是多少?
②的长度是否是定值?如果是,请求出这个定值;若不是,请说明理由;
(3)在(2)中的条件下,若点是的外心,直接写出点运动的路经长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com