| A. | $\sqrt{3}$ | B. | $\frac{1}{3}\sqrt{3}+1$ | C. | $\frac{1}{2}\sqrt{3}+1$ | D. | $\frac{3}{2}$ |
分析 先根据勾股定理求出OD的长,再过点C作CF⊥y轴于点F,根据ASA定理得出△CDF≌△DAO,故可得出C点坐标,求出k的值,再求出OH的长,进而可得出E点坐标.
解答
解:∵Rt△AOD中,OA=1,AD=2,
∴OD=$\sqrt{{AD}^{2}-{OA}^{2}}$=$\sqrt{{2}^{2}-{1}^{2}}$=$\sqrt{3}$.
过点C作CF⊥y轴于点F,
∵∠CDF+∠ADO=90°,∠CDF+∠DCF=90°,
∴∠DCF=∠ADO,
同理,∠CDF=∠DAO,
在△CDF与△DAO中,
$\left\{\begin{array}{l}∠DCF=∠ADO\\ CD=AD\\∠CDF=∠DAO\end{array}\right.$,
∴△CDF≌△DAO(ASA),
∴CF=OD=$\sqrt{3}$,DF=OA=1,
∴C($\sqrt{3}$,1+$\sqrt{3}$).
∵反比例函数y=$\frac{k}{x}$图象经过点C,
∴k=$\sqrt{3}$×(1+$\sqrt{3}$)=3+$\sqrt{3}$,
∴反比例函数的解析式为y=$\frac{3+\sqrt{3}}{x}$.
∵OH=OA+AH=1+2=3,
∴点E的横坐标为3,
∴y=$\frac{3+\sqrt{3}}{3}$=1+$\frac{\sqrt{3}}{3}$.
故选B.
点评 本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 8cm | B. | 12cm | C. | 16cm | D. | 24cm |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com