分析 (1)根据平行线的性质进行证明即可;
(2)根据(1)中得出即可;
(3)根据三角形的内角和定理进行解答即可.
解答 (1)证明:∵DE∥BA,
∴∠A+∠AFD=180°,
∵DF∥CA,
∴∠FDE+∠AFD=180°,
∴∠FDE=∠A,
(2)解:∠B+∠BNF=$\frac{1}{2}$∠AFG;
(3)解:设∠BFG=x,
则∠AFG=180°-x,
∵FG平分∠BFD,
∴∠BFD=2∠BFG=2x,
∵DF∥CA,
∴∠FDE=∠A=∠BFD=2x,
∵∠FDE-∠B=5°,
∴∠B=2x-5°,
∵∠BNF=20°,
∴2x-5°+20°=$\frac{1}{2}$(180°-x)
∴x=30°,
∴∠A=2x=60°,
点评 此题考查三角形的内角和问题,关键是根据平行线的性质和三角形的内角和定理进行解答.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{3}{10}$ | B. | $\frac{10}{3}$ | C. | $\frac{7}{10}$ | D. | $\frac{10}{7}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com