【题目】如图,在Rt△ABC中,∠ABC=90°,AB=BC,点E为线段AB上一动点(不与点A,B重合),连接CE,将∠ACE的两边CE,CA分别绕点C顺时针旋转90°,得到射线CE,,CA,,过点A作AB的垂线AD,分别交射线CE,,CA,于点F,G.
(1)依题意补全图形;
(2)若∠ACE=α,求∠AFC 的大小(用含α的式子表示);
(3)用等式表示线段AE,AF与BC之间的数量关系,并证明.
【答案】(1)补全的图形如图所示见解析;(2)∠AFC =α+45°;(3)AE,AF与BC之间的数量关系为 .证明见解析.
【解析】
(1)利用旋转的性质进而得出对应点位置进而得出答案;(2)根据旋转得出∠ECF=∠ACG=90°,∠FCG=∠ACE=α,最后用三角形的外角的性质即可得出结论;(3)借助(2)的结论判断出△ACE≌△GCF(ASA),得出AE=FG,再用勾股定理得出AG=
AC,AC=BC,即可得出结论.
(1)补全的图形如图所示.
(2)解:由题意可知,∠ECF=∠ACG=90°
∴∠FCG=∠ACE=α
∵过点A作AB的垂线AD
∴∠BAD=90°
∵AB=BC,∠ABC=90°,
∴∠ACB=∠CAD= 45°
∵∠ACG=90°
∴∠AGC=45°
∴∠AFC =α+45°
(3)AE,AF与BC之间的数量关系为
证明:由(2)可知∠DAC=∠AGC=45°
∴CA=CG
∵∠ACE =∠GCF,∠CAE =∠CGF
∴△ACE ≌△GCF
∴AE =FG.
在Rt△ACG中,
∴
∴
∵
∴
科目:初中数学 来源: 题型:
【题目】为了了解江城中学学生的身高情况,随机对该校男生、女生的身高进行抽样调查.已知抽取的样本中,男生、女生的人数相同,根据所得数据绘制成如图所示的统计图表.
组别 | 身高(cm) |
A | x<150 |
B | 150≤x<155 |
C | 155≤x<160 |
D | 160≤x<165 |
E | x≥165 |
根据图表中提供的信息,回答下列问题:
(1)在样本中,男生身高的中位数落在________组(填组别序号),女生身高在B组的人数有________人;
(2)在样本中,身高在150≤x<155之间的人数共有________人,身高人数最多的在________组(填组别序号);
(3)已知该校共有男生500人、女生480人,请估计身高在155≤x<165之间的学生有多少人
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示双曲线y=与y=﹣分别位于第三象限和第二象限,A是y轴上任意一点,B是y=﹣上的点,C是y=上的点,线段BC⊥x轴于D,且4BD=3CD,则下列说法:①双曲线y=在每个象限内,y随x的增大而减小;②若点B的横坐标为﹣3,则C点的坐标为(﹣3,);③k=4;④△ABC的面积为定值7,正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有2部不同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看.
(1)求甲选择A部电影的概率;
(2)求甲、乙、丙3人选择同一部电影的概率(请用画树状图的方法给出分析过程,并求出结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小松设计的“做圆的内接等腰直角三角形”的尺规作图过程.
已知:⊙O.
求作:⊙O的内接等腰直角三角形.
作法:如图,
①作直径AB;
②分别以点A,B为圆心,以大于的同样长为半径作弧,两弧交于M,N两点;
③作直线MN交⊙O于点C,D;
④连接AC,BC.
所以△ABC就是所求作的三角形.
根据小松设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:∵AB是直径, C是⊙O上一点
∴ ∠ACB= ( ) (填写推理依据)
∵AC=BC( )(填写推理依据)
∴△ABC是等腰直角三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的方格纸(每个小方格都是边长为1个单位的正方形)中建立平面直角坐标系,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:
(1)画出△ABC关于x轴对称的△A1B1C1,并写出点B1的坐标;
(2)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2;
(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和x)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线∥ ,⊙O与和分别相切于点A和点B.点M和点N分别是和上的动点,MN沿和平移.⊙O的半径为1,∠1=60°.下列结论错误的是( )
A. B. l1和l2的距离为2
C. 若∠MON=90°,则MN与⊙O相切 D. 若MN与⊙O相切,则
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | 12 |
给出了结论:
(1)二次函数有最小值,最小值为﹣3;
(2)当时,y<0;
(3)二次函数的图象与x轴有两个交点,且它们分别在y轴两侧.
则其中正确结论的个数是
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A、B两点的坐标分别为A(0,2),B(2,0),直线AB与反比例函数y=的图象交于点C和点D(﹣1,a).
(1)求直线AB和反比例函数的解析式;
(2)求∠ACO的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com