精英家教网 > 初中数学 > 题目详情
10.二次函数y=3x2+4的图象与x轴没有交点,其方程3x2+4=0在实数范围内无解.

分析 通过计算方程3x2+4=0的根的判别式得到△<0,根据判别式的意义可判断方程没有实数解,然后根据抛物线与x轴的交点问题可判断抛物线与x轴交点情况.

解答 解:对于方程3x2+4=0,△=0-4×3×4<0,则方程3x2+4=0在实数范围内无解,所以二次函数y=3x2+4的图象与x轴没有交点.
故答案为:没有交点,无解.

点评 本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2-4ac决定抛物线与x轴的交点个数:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

20.点A(m,m-3)在第一象限,则实数m的取值范围为m>3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.在平面直角坐标系中,已知点A(1,2),B(4,5),C(5,2),如果存在点E,使△ACE和△ACB全等,则符合题意的点共有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,该表面展开图按虚线折叠成正方体后,相对面上的两个数互为相反数,则(x+y)的值为(  )
A.-2B.-3C.2D.1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,Rt△ABC中,AB=AC,∠BAC=90°,点O是BC的中点,如果点M、N分别在线段AB、AC上移动,并在移动过程中始终保持AN=BM.
(1)求证:△ANO≌△BMO;
(2)求证:OM⊥ON.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.三个全等的直角梯形①、②、③在平面直角坐标系中的位置如图所示,抛物线y=ax2+bx+c经过梯形的顶点A、B、C、D,已知梯形的两条底边长分别为4,6,则梯形的两腰长分别为2、2$\sqrt{2}$,该抛物线解析式为y=$-\frac{1}{4}{x}^{2}+\frac{1}{2}x+6$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.已知点A在半径为3的⊙O内,OA等于1,点B是⊙O上一点,连接AB,当∠OBA取最大值时,AB长度为(  )
A.$\sqrt{10}$B.2$\sqrt{2}$C.3D.2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.点P在图形M上,点Q在图形N上,记dmax(M,N)为线段PQ长度的最大值,dmin(M,N)为线段PQ长度的最小值,图形M、N的平均距离Ed(M,N)=$\frac{{{d_{max}}(M,N)+{d_{min}}(M,N)}}{2}$.已知A(0,0),B(2,0),C(4,2),线段AB以每秒1个单位的速度沿着x轴正方向匀速运动.

(1)如图1,求经过1秒后,Ed(C,AB);
(2)写出线段AB在运动过程中Ed(C,AB)关于时间t的函数解析式;
(3)如图2,已知抛物线的一部分m:y=(x-2)2+$\frac{9}{4}$(0≤x≤2)和线段EF:y=-x+1(0≤x≤1),求Ed(EF,m).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,点E是正方形ABCD内一点,点E到点A,B和D的距离分别为1,2$\sqrt{2}$,$\sqrt{10}$.将△ADE绕点A旋转至△ABG,连结ABG,连结AE,并延长AE与BC相交于点F,连接GF,则线段GF长为$\frac{\sqrt{178}}{3}$.

查看答案和解析>>

同步练习册答案