精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数y=x+3的图象与x轴,y轴交于A,B两点,与反比例函数的图象相交于C,D两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE.有下列四个结论:

①△CEF与△DEF的面积相等;

②△AOB∽△FOE;

③△DCE≌△CDF;

④AC=BD.

其中正确的结论是(

A.①② B.①②③ C.①②③④ D.②③④

【答案】C.

【解析】

试题解析:①设D(x,),则F(x,0),

由图象可知x>0,

∴△DEF的面积是:×||×|x|=2,

设C(a,),则E(0,),

由图象可知:<0,a>0,

△CEF的面积是:×|a|×||=2,

∴△CEF的面积=△DEF的面积,

故①正确;

②△CEF和△DEF以EF为底,则两三角形EF边上的高相等,

故EF∥CD,

∴FE∥AB,

∴△AOB∽△FOE,

故②正确;

③∵C、D是一次函数y=x+3的图象与反比例函数的图象的交点,

∴x+3=

解得:x=-4或1,

经检验:x=-4或1都是原分式方程的解,

∴D(1,4),C(-4,-1),

∴DF=4,CE=4,

∵一次函数y=x+3的图象与x轴,y轴交于A,B两点,

∴A(-3,0),B(0,3),

∴∠ABO=∠BAO=45°,

∵DF∥BO,AO∥CE,

∴∠BCE=∠BAO=45°,∠FDA=∠OBA=45°,

∴∠DCE=∠FDA=45°,

在△DCE和△CDF中

∴△DCE≌△CDF(SAS),

故③正确;

④∵BD∥EF,DF∥BE,

∴四边形BDFE是平行四边形,

∴BD=EF,

同理EF=AC,

∴AC=BD,

故④正确;

正确的有4个.

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】四边形ABCD中,∠A=∠C,∠B=∠D,则下列结论中错误的是(
A.AB=CD
B.AD∥BC
C.∠A=∠B
D.对角线互相平分

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D点,连接CD.

(1)求证:∠A=∠BCD;

(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列数中﹣1,2,﹣3,﹣2,3是一元二次方程x2﹣2x=3的根是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】k取何值时,关于x的方程(k2﹣1)x2+2(k+1)x+3(k﹣1)=0

(1)是一元一次方程?

(2)是一元二次方程?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】三角形的内角和为__________度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若⊙O的半径为8cm,点A到圆心O的距离为6cm,那么点A与⊙O的位置关系是()

A. A在⊙O B. A在⊙O C. A在⊙O D. 不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.

(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);

(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a的值;

(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知x=﹣2是方程x2+mx﹣6=0的一个根,则方程的另一个根是

查看答案和解析>>

同步练习册答案