【题目】如图,一次函数y=x+3的图象与x轴,y轴交于A,B两点,与反比例函数的图象相交于C,D两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE.有下列四个结论:
①△CEF与△DEF的面积相等;
②△AOB∽△FOE;
③△DCE≌△CDF;
④AC=BD.
其中正确的结论是( )
A.①② B.①②③ C.①②③④ D.②③④
【答案】C.
【解析】
试题解析:①设D(x,),则F(x,0),
由图象可知x>0,
∴△DEF的面积是:×||×|x|=2,
设C(a,),则E(0,),
由图象可知:<0,a>0,
△CEF的面积是:×|a|×||=2,
∴△CEF的面积=△DEF的面积,
故①正确;
②△CEF和△DEF以EF为底,则两三角形EF边上的高相等,
故EF∥CD,
∴FE∥AB,
∴△AOB∽△FOE,
故②正确;
③∵C、D是一次函数y=x+3的图象与反比例函数的图象的交点,
∴x+3=,
解得:x=-4或1,
经检验:x=-4或1都是原分式方程的解,
∴D(1,4),C(-4,-1),
∴DF=4,CE=4,
∵一次函数y=x+3的图象与x轴,y轴交于A,B两点,
∴A(-3,0),B(0,3),
∴∠ABO=∠BAO=45°,
∵DF∥BO,AO∥CE,
∴∠BCE=∠BAO=45°,∠FDA=∠OBA=45°,
∴∠DCE=∠FDA=45°,
在△DCE和△CDF中,
∴△DCE≌△CDF(SAS),
故③正确;
④∵BD∥EF,DF∥BE,
∴四边形BDFE是平行四边形,
∴BD=EF,
同理EF=AC,
∴AC=BD,
故④正确;
正确的有4个.
故选C.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D点,连接CD.
(1)求证:∠A=∠BCD;
(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若⊙O的半径为8cm,点A到圆心O的距离为6cm,那么点A与⊙O的位置关系是()
A. 点A在⊙O内 B. 点A在⊙O上 C. 点A在⊙O外 D. 不能确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.
(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);
(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a的值;
(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com