【题目】某地为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地决策,自来水公司随机抽取部分用户的用适量数据,并绘制了如下不完整统计图(每组数据包括右端点但不包括左端点),请你根据统计图解决下列问题:
(1)此次调查抽取了多少用户的用水量数据?
(2)补全频数分布直方图,求扇形统计图中“25吨~30吨”部分的圆心角度数;
(3)如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?
【答案】(1)100户(2)直方图见解析,90°(3)13.2万户
【解析】解:(1)∵10÷10%=100(户),
∴此次调查抽取了100户用户的用水量数据。
(2)∵用水“15吨~20吨”部分的户数为100﹣10﹣36﹣25﹣9=100﹣80=20(户),
∴据此补全频数分布直方图如图:
扇形统计图中“25吨~30吨”部分的圆心角度数为×360°=90°。
(3)∵×20=13.2(万户)。
∴该地20万用户中约有13.2万户居民的用水全部享受基本价格。
(1)根据频数、频率和总量的关系,由用水“0吨~10吨”部分的用户数和所占百分比即可求得此次调查抽取的用户数。
(2)求出用水“15吨~20吨”部分的户数,即可补全频数分布直方图。由用水“20吨~300吨”部分的户所占百分比乘以360°即可求得扇形统计图中“25吨~30吨”部分的圆心角度数。
(3)根据用样本估计总体的思想即可求得该地20万用户中用水全部享受基本价格的用户数。
科目:初中数学 来源: 题型:
【题目】如图,已知∠1和∠2互为补角,∠A=∠D.求证:AB∥CD.
证明:∵∠1与∠CGD是对顶角,
∴∠1=∠CGD(______).
又∠1和∠2互为补角(已知),
∴∠CGD和∠2互为补角,
∴AE∥FD(_________),
∴∠A=∠BFD(_______).
∵∠A=∠D(已知),
∴∠BFD=∠D(_______),
AB∥CD(______).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1. ①b2>4ac;②b<0;③y随x的增大而减小;④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2 , 上述4个判断中,正确的是( )
A.①②④
B.①④
C.①③④
D.②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边△ABC中,点D,E分别在边BC,AC上,且AE=CD,BE与AD相交于点P,BQ上AD于点Q.
(1)求证:AD=BE;
(2)求∠PBQ的度数;
(3)若PQ=3,PE=1,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某次考试中,某班级的数学成绩统计图如图.下列说法错误的是( )
A. 得分在70~80分之间的人数最多 B. 该班的总人数为40
C. 得分在90~100分之间的人数最少 D. 及格(≥60分)人数是26
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1 , 另两张直角三角形纸片的面积都为S2 , 中间一张正方形纸片的面积为S3 , 则这个平行四边形的面积一定可以表示为( )
A.4S1
B.4S2
C.4S2+S3
D.3S1+4S3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题:
①有一条直角边和斜边的高对应相等的两个直角三角形全等;
②有两边和其中一边上高对应相等的两个三角形全等;
③有两边和第三边上的中线对应相等的两个三角形全等;
④有两边和其中一边上的中线对应相等的两个三角形全等.
其中正确的命题有( )A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.
(1)打折前甲、乙两种品牌粽子每盒分别为多少元?
(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com