【题目】如图,抛物线y=ax2+bx+c(a≠0)与x轴、y轴分别交于A(-1,0)、B(3,0)、C(0,3)三点.
(1)试求抛物线的解析式;
(2)P是直线BC上方的抛物线上的一个动点,设P的横坐标为t,P到BC的距离为h,求h与t的函数关系式,并求出h的最大值;
(3)设点M是x轴上的动点,在平面直角坐标系中,是否存在点N,使得以点A、C、M、N为顶点的四边形是菱形?若存在,求出所有符合条件的点N坐标;若不存在,说明理由.
【答案】(1)y=-x2+2x+3.(2) t=时,最大值为.(3) 存在.N1(0,-3),N2(-,3),N3(,3),N4(-5,3).
【解析】试题分析:(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线的解析式;
(2)过点P作PD⊥x轴于点D,交BC于点E,PH⊥BC于点H,连结PB、PC,可先求得直线BC的解析式,则可用t分别表示出E的坐标,从而可表示出PE的长,再可用t表示出△PBC的面积,再利用等积法可用t表示出h,利用二次函数的性质可求得h的最大值;
(3)分AM、CM和AC为对角线三种情况,分别根据菱形的性质可求得N点的坐标.
试题解析:(1)∵抛物线y=ax2+bx+c过A(-1,0)、B(3,0)、C(0,3)三点,
∴,解得,
∴抛物线的解析式为y=-x2+2x+3;
(2)过点P作PD⊥x轴于点D,交BC于点E,PH⊥BC于点H,连结PB、PC.
∵B(3,0)、C(0,3),
∴OB=OC=3,BC=,
设直线BC解析式为y=kx+n,则,解得
∴直线BC解析式为y=-x+3,
∵点P的横坐标为t,且在抛物线y=-x2+2x+3上,
∴P(t,-t2+2t+3),
又∵PD⊥x轴于点D,交BC于点E,
∴D(t,0),E(t,-t+3),
∴PE=(-t2+2t+3)-(-t+3)=-t2+3t,
∴S△PBC=S△PEB+S△PEC=PEBD+PEOD=PE(BD+OD)=PEOB= (t2+3t)×3=t2+t,
又∵S△PBC=BCPH=×3h=h,
∴h=t2+t,
∴h与t的函数关系式为:h=t2+t(0<t<3),
∵h=t2+t= (t)2+,
∴当t=时,h有最大值为;
(3)存在.
若AM为菱形对角线,则AM与CN互相垂直平分,
∴N(0,-3);
若CM为菱形对角线,则CN=AM=AC==,
∴N(,3)或N(,3);
若AC为菱形对角线,则CN=AM=CM,
设M(m,0),由CM2=AM2,得m2+32=(m+1)2,解得m=4,
∴CN=AM=CM=5,
∴N(-5,3).
综上可知存在点N,使得以点A、C、M、N为顶点的四边形是菱形,符合条件的点N有4个:N1(0,-3),N2(,3),N3(,3),N4(-5,3).
科目:初中数学 来源: 题型:
【题目】为了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的中考数学成绩进行统计分析,那么样本是( )
A. 被抽取500名学生的中考数学成绩B. 5万名初中毕业生
C. 某市5万名初中毕业生的中考数学成绩D. 500
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现代互联网技术的广泛应用,催生了快递行业的高速发展.阜阳市某家快递公司,2017年3月份与5月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的增长率相同.
(1)求该快递公司投递快递总件数的月平均增长率?
(2) 如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成2017年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2-3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E.
(1)求直线BC的解析式;
(2)当线段DE的长度最大时,求点D的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com