【题目】在四边形中,与的角平分线交于点,,过点作交于点,,,连接,,则__________.
科目:初中数学 来源: 题型:
【题目】阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:,善于思考的小明进行了以下探索:
设(其中均为整数),则有.
∴.这样小明就找到了一种把部分的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
当均为正整数时,若,用含m、n的式子分别表示,得= ,= ;
(2)利用所探索的结论,找一组正整数,填空: + =( + )2;
(3)若,且均为正整数,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数 ,则下列结论不正确的是( )
A.图象必经过点(-1,5)
B.图象的两个分支分布在第二、四象限
C.y随x的增大而增大
D.若x>1,则-5<y<0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面说法正确的个数有( )
(1)二元一次方程组的两个方程的所有解,叫做二元一次方程组的解;
(2)如果,则;
(3)三角形的外角等于与它不相邻的两个内角的和;
(4)多边形内角和等于;
(5)一组数据1,2,3,4,5的众数是0
A.0个B.1个C.2个D.3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)操作发现
如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:
①线段DE与AC的位置关系是;
②设△BDC的面积为S1 , △AEC的面积为S2 , 则S1与S2的数量关系是.
(2)猜想论证
当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.
(3)拓展探究
已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,DE//AB交BC于点E(如图4).若在射线BA上存在点F,使 ,请直接写出相应的BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC在平面直角坐标系中,且A、B、C.将其平移后得到,若A,B的对应点是,,C的对应点的坐标是.
(1)在平面直角坐标系中画出△ABC;
(2)写出点的坐标是_____________,坐标是___________;
(3)此次平移也可看作向________平移了____________个单位长度,再向_______平移了______个单位长度得到△ABC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:
例:将化为分数形式,
由于,设,①
得,②
②①得,解得,于是得.
同理可得,.
根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)
(类比应用)
(1) ;
(2)将化为分数形式,写出推导过程;
(迁移提升)
(3) , ;(注,)
(拓展发现)
(4)若已知,则 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一批共享单车需要维修,维修后继续投放骑用,现有甲、乙两人做维修,甲每天维修16辆,乙每天维修的车辆比甲多8辆,甲单独维修完成这批共享单车比乙单独维修完多用20天,公司每天付甲80元维修费,付乙120元维修费.
(1)问需要维修的这批共享单车共有多少辆?
(2)在维修过程中,公司要派一名人员进行质量监督,公司负担他每天10元补助费,现有三种维修方案:①由甲单独维修;
②由乙单独维修;
③甲、乙合作同时维修,你认为哪种方案最省钱,为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com