精英家教网 > 初中数学 > 题目详情

【题目】阅读材料:由绝对值的意义可知:当时, ;当时, .利用这一特性,可以帮助我们解含有绝对值的方程.比如:方程

时,原方程可化为,解得

时,原方程可化为,解得

所以原方程的解是

1)请补全题目中横线上的结论.

2)仿照上面的例题,解方程:

3)若方程有解,则应满足的条件是

【答案】1a-a;(2x=x=,见解析;(3m≥1

【解析】

(1)根据绝对值化简填空即可;(2)根据绝对值的性质分3x+1≥03x+1≤0两种情况讨论;(3)根据绝对值非负性列出不等式解答即可.

解:(1a-a

2)原方程化为

3x+1≥0时,方程可化为3x+1=5,解得:x=

3x+1≤0时,方程可化为3x+1=-5,解得:x=

所以原方程的解是x=x=

3)∵方程有解

m≥1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将一个直角三角板中30°的锐角顶点与另一个直角三角板的直角顶点叠放一起.(:∠ACB∠DEC是直角,∠A=45°,∠DEC=30°).

(1)如图①,若点C、B、D在一条直线上,求∠ACE的度数

(2)如图②,将直角三角板CDE绕点c逆时针方向转动到某个位置,若恰好平分∠DCE,求∠BCD的度数;

(3)如图∠DEC始终在∠ACB的内部,分别作射线CM平分∠BCD,射线CN平分∠ACE.如果三角板DCE∠ACB内绕点C任意转动,∠MCN的度数是否发生变化?如果不变,求出它的度数,如果变化,说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两名队员参加射击训练,成绩分别绘制成下列两个统计图:

根据以上信息,整理分析数据如下:

平均成绩()

中位数()

众数()

方差

a

7

7

1.2

7

b

8

c

(1)写出表格中a,b,c的值;

(2)分别运用表中的四个统计量,简要分析这两名队员的射击成绩,若选派其中一名参赛,你认为应选哪名队员?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以点O为端点按顺时针方向依次作射线OAOBOCOD.

1)若∠AOC、∠BOD都是直角,∠BOC60°,求∠AOB和∠DOC的度数.

2)若∠BOD100°,∠AOC110°,且∠AOD=∠BOC+70°,求∠COD的度数.

3)若∠AOC=∠BODα,当α为多少度时,∠AOD和∠BOC互余?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在3×3的正方形网格中标出了∠1∠2.则∠1+∠2=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1二次函数y=ax2﹣2ax﹣3aa0的图象与x轴交于AB两点A在点B的右侧),y轴的正半轴交于点C顶点为D

1求顶点D的坐标用含a的代数式表示).

2若以AD为直径的圆经过点C

①求a的值

②如图2Ey轴负半轴上一点连接BE将△OBE绕平面内某一点旋转180°得到△PMNPMN分别和点OBE对应),并且点MN都在抛物线上MFx轴于点F若线段BF=2MF求点MN的坐标

③如图3Q在抛物线的对称轴上Q为圆心的圆过AB两点并且和直线CD相切求点Q的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:数和形是数学的两个主要研究对象,我们经常运用数形结合,树形转化的方法解决一些数学问题,小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1x1y1),P2x2y2),可通过构造直角三角形利用图1得到结论:P1P2=,他还利用图2证明了线段P1P2的中点Pxy),P的坐标公式:x=y=

启发应用:

如图3:在平面直角坐标系中,已知A80),B06),C17),M经过原点O及点AB

1)求⊙M的半径及圆心M的坐标;

2)判断点C与⊙M的位置关系,并说明理由;

3)若∠BOA的平分线交AB于点N,交⊙M于点E,分别求出OE的表达式y1,过点M的反比例函数的表达式y2,并根据图象,当y2y10时,请直接写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,点C为半径OB上一点,过点CCDAB交半圆O于点D,将△ACD沿AD折叠得到△AEDAE交半圆于点F,连接DF

1)求证:DE是半圆的切线:

2)连接0D,当OC=BC时,判断四边形ODFA的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两车从A地出发沿同一路线驶向B地,甲车先出发匀速驶向B地.40分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了50千米/时,结果与甲车同时到达B地.甲乙两车距A地的路 y(千米)与乙车行驶时间x(小时)之间的函数图象如图所示.请结合图象信息解答下列问题:

1)直接写出a的值,并求甲车的速度;

2)求图中线段EF所表示的yx的函数关系式,并直接写出自变量x的取值范围.

查看答案和解析>>

同步练习册答案