【题目】给出以下五个方程:
①;②;③;④;⑤
其中一元二次方程有________(写序号)
请你选择其中的一个一元二次方程用适当的方法求出它的解.
【答案】(1)①③④;(2)①x1=1,x2=-3;③x=5或x=-1;④x1=,x2=-.
【解析】
(1)根据一元二次方程的定义判断①③④是一元二次方程;(2)选择①,利用直接开平方法解方程即可;选择③,利用因式分解法解方程即可;选择④,利用直接开平方法解方程即可.
(1)①③④是一元二次方程;②是二元一次方程;⑤是分式方程.
(2)①2(x+1)2=8,
由原方程,得
(x+1)2=4,
直接开平方,得
x+1=±2,
则x+1=2或x+1=-2,
∴x1=1,x2=-3;
③x2-4x-5=0,
由原方程,得
(x-5)(x+1)=0,
则x-5=0或x+1=0,
解得,x=5或x=-1;
④x2-5=0,
移项,得x2=5,
化未知数系数为1,得
x2=,
直接开平方,得
x=±,
x1=,x2=-.
科目:初中数学 来源: 题型:
【题目】我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图A可以用来解释,实际上利用一些卡片拼成的图形面积也可以对某些整式进行乘法运算.
(1)图B可以解释的代数恒等式是_____________ ;
(2)现有足够多的正方形和矩形卡片,如图C:
①若要拼出一个面积为的矩形,则需要1号卡片 张,2号卡片 张,3号卡片 张;
②试画出一个用若干张1号卡片、2号卡片和3号卡片拼成的矩形,使该矩形的面积为,并利用你画的图形面积对进行乘法运算.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平面直角坐标系中,正比例函数图像与反比例函数交于点A(4, ),过点A作的垂线交x轴于点B.
(1)求反比例函数的解析式;
(2)如果点C在的图像上,且△CAB的面积为△OAB面积的2倍,求点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平行四边形中,、分别是边、的中点,分别交、于、.请判断下列结论:;;;.其中正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若,是关于的方程的两个实数根,且(是整数),则称方程为“偶系二次方程”.如方程,,,,,都是“偶系二次方程”.
判断方程是否是“偶系二次方程”,并说明理由;
对于任意一个整数,是否存在实数,使得关于的方程是“偶系二次方程”,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明和小亮进行百米赛跑,小明比小亮跑得快,如果两人同时起跑,小明肯定赢,现在小明让小亮先跑若干米,图中,分别表示两人的路程与小明追赶时间的关系.
(1)哪条线表示小明的路程与时间之间的关系?
(2)小明让小亮先跑了多少米?
(3)谁将赢得这场比赛?
(4)对应的一次函数表达式中,一次项系数是多少?它的实际意义是什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现代互联网技术的广泛应用,催生了快递行业的高速发展.阜阳市某家快递公司,2017年3月份与5月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的增长率相同.
(1)求该快递公司投递快递总件数的月平均增长率?
(2) 如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成2017年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2018年湖南省进入高中学习的学生三年后将面对新高考,高考方案与高校招生政策都将有重大变化。某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为A,B,C,D四个等级,并对调查结果分析后绘制了如下两幅图不完整的统计图。请你根据图中提供的信息完成下列问题:
(1)求被调查学生的人数,并将条形统计图补充完整;
(2)求扇形统计图中的A等对应的扇形圆心角的度数;
(3)已知该校有1500名学生,估计该校学生对政策内容了解程度达到A等的学生有多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com