精英家教网 > 初中数学 > 题目详情

【题目】直线l1:y1=x1+2和直线l2:y2=﹣x2+4相交于点A,分别于x轴相交于点B和点C,分别与y轴相交于点D和点E.
(1)在平面直角坐标系中按照列表、描点、连线的方法画出直线l1和l2的图象,并写出A点的坐标.
(2)求△ABC的面积.
(3)求四边形ADOC的面积.

【答案】
(1)解:如图所示,A(1,3);


(2)解:∵直线l1:y1=x1+2和直线l2:y2=﹣x2+4分别于x轴相交于点B和点C,

∴B(﹣2,0),C(4,0),

∴BC=6,

∵A(1,3),

∴SABC= BC×yA= ×6×3=9;


(3)解:∵B(﹣2,0),D(0,2),

∴OB=2,OD=2,

∴SBOD= ×OB×OD= ×2×2=2,

∵SABC=9,

∴S四边形ADOC=SABC﹣SBOD=9﹣2=7.


【解析】(1)依题意画出如图所示图形,写出A点的坐标即可;(2)用面积公式求出面积即可;(3)求出三角形BOD的面积,再根据S四边形ADOC=SABC﹣SBOD , 即可求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF,下列结论错误的是(
A.△ADE≌△BFE
B.AD+BG=DG
C.连接EG,EG∥DC
D.连接EG,EG⊥DF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,∠B=30°.

(1)作∠A的平分线AD,交BC于点D(用尺规作图,不写作法,但保留作图痕迹,然后用墨水笔加黑);

(2)计算SDACSABC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B、C在A、E的异侧,BD⊥AE于D,CE⊥AE于E.

(1)求证:BD=DE+CE;
(2)若直线AE绕A点旋转到图2位置时(BD<CE),其余条件不变,则BD与DE、CE的数量关系如何?请予以证明;

(3)若直线AE绕A点旋转到图3位置时(BD>CE),其余条件不变,问BD与DE、CE的关系如何?请直接写出结果,不需说明理由;

(4)根据以上的讨论,请用简洁的语言表述BD与DE、CE的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,APB中,AB=2,APB=90°,在AB的同侧作正ABD、正APE和正BPC,则四边形PCDE面积的最大值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC是等边三角形,点D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF,CF,连接BE并延长交CF于点G.下列结论:

①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,则GF=2EG.其中正确的结论是 .(填写所有正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市对教师试卷讲评课中学生参与的深度和广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中生的参与情况,绘制了如下两幅不完整的统计图.请根据图中所给的信息解答下列问题:

(1)这次评价中,一共抽查了名学生;
(2)请将条形统计图补充完整;
(3)如果全市有16万初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少万人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.
(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)
(2)请选择(1)中的一种情形,写出证明过程.

查看答案和解析>>

同步练习册答案