【题目】学校运动会的立定跳远和1分钟跳绳两个单项比赛分成预赛和决赛两个阶段.下表为参加这两项比赛的10名学生的预赛成绩:
学生编号 成绩 项目 | 3104 | 3508 | 3115 | 3406 | 3317 | 3413 | 3218 | 3307 | 3519 | 3210 |
立定跳远(单位:米) | 1.96 | 1.92 | 1.82 | 1.80 | 1.78 | 1.76 | 1.74 | 1.72 | 1.68 | 1.60 |
1分钟跳绳(单位:次) | 163 | 175 | 160 | 163 | 172 | 170 | 165 |
在这10名学生中,同时进入两项决赛的只有6人,进入立定跳远决赛的有8
科目:初中数学 来源: 题型:
【题目】如图,在半径为4的⊙O中,CD为直径,AB⊥CD且过半径OD的中点,点E为⊙O上一动点,CF⊥AE于点F.当点E从点B出发顺时针运动到点D时,点F所经过的路径长为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一般情况下,学生注意力上课后逐渐增强,中间有段时间处于较理想的稳定状态,随后开始分散.实验结果表明,学生注意力指数y随时间x(min)的变化规律如图所示(其中分别为线段,为双曲线的一部分):
(1)上课后第与第相比较,何时学生注意力更集中?
(2)某道难题需连续讲,为保证效果,学生注意力指数不宜低于,老师能否在所需要求下讲完这道题?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.
(1)证明与推断:
①求证:四边形CEGF是正方形;
②推断:的值为 :
(2)探究与证明:
将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:
(3)拓展与运用:
正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,的半径为,点与圆心不重合,给出如下定义:若在上存在一点,使,则称点为的特征点.
(1)当的半径为1时,如图1.
①在点,,中,的特征点是__________.
②点在直线上,若点为的特征点,求的取值范围.
(2)如图2,的圆心在轴上,半径为2,点,.若线段上的所有点都是的特征点,直接写出圆心的横坐标的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:对于任意正实数a、b,∵≥0, ∴≥0,
∴≥,只有当a=b时,等号成立.
结论:在≥(a、b均为正实数)中,若ab为定值p,则a+b≥,只有当a=b时,a+b有最小值.
根据上述内容,回答下列问题:
若m>0,只有当m= 时,有最小值 .
思考验证:如图1,AB为半圆O的直径,C为半圆上任意一点(与点A、B不重合),过点C作CD⊥AB,垂足为D,AD=a,DB=b.
试根据图形验证≥,并指出等号成立时的条件.
探索应用:如图2,已知A(-3,0),B(0,-4),P为双曲线(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=x2+(m﹣2)x﹣2m(m>0)与x轴交于A、B两点(A在B左边),与y轴交于点C.连接AC、BC,D为抛物线上一动点(D在B、C两点之间),OD交BC于E点.
(1)若△ABC的面积为8,求m的值;
(2)在(1)的条件下,求的最大值;
(3)如图2,直线y=kx+b与抛物线交于M、N两点(M不与A重合,M在N左边),连MA,作NH⊥x轴于H,过点H作HP∥MA交y轴于点P,PH交MN于点Q,求点Q的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形纸片,是的中点,是上一动点,沿折叠,点落在点处;延长交于点,连接.
(1)求证:≌;
(2)当时,将沿折叠,点落在线段上点处.
①求证:∽;
②如果,,求的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com