精英家教网 > 初中数学 > 题目详情

【题目】老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.

(1)求条形图中被遮盖的数,并写出册数的中位数;

(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;

(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了   人.

【答案】(1)条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率为;(3)3

【解析】1)用读书为6册的人数除以它所占的百分比得到调查的总人数,再用总人数分别减去读书为4册、6册和7册的人数得到读书5册的人数,然后根据中位数的定义求册数的中位数;

(2)用读书为6册和7册的人数和除以总人数得到选中读书超过5册的学生的概率;

(3)根据中位数的定义可判断总人数不能超过27,从而得到最多补查的人数.

1)抽查的学生总数为6÷25%=24(人),

读书为5册的学生数为24﹣5﹣6﹣4=9(人),

所以条形图中被遮盖的数为9,册数的中位数为5;

(2)选中读书超过5册的学生的概率=

(3)因为4册和5册的人数和为14,中位数没改变,所以总人数不能超过27,即最多补查了3人,

故答案为:3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bxa0)过点E80),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点CD在抛物线上,∠BAD的平分线AMBC于点M,点NCD的中点,已知OA2,且OAAD13.

1)求抛物线的解析式;

2FG分别为x轴,y轴上的动点,顺次连接MNGF构成四边形MNGF,求四边形MNGF周长的最小值;

3)在x轴下方且在抛物线上是否存在点P,使△ODPOD边上的高为?若存在,求出点P的坐标;若不存在,请说明理由;

4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点KL,且直线KL平分矩形的面积时,求抛物线平移的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《九章算术》中记载:今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?译文:今有甲乙二人,不知其钱包里有多少钱.若乙把自己一半的钱给甲,则甲的钱数为50钱;而甲把自己的钱给乙,则乙的钱数也为50钱.问甲、乙各有多少钱?设甲、乙原有钱数分别为,下列所列方程组正确的是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为鼓励市民节约用水,某市自来水公司按分段收费标准收费,右图反映的是每月收水费y(元)与用水量x(吨)之间的函数关系

1)小红家五月份用水8吨,应交水费_____元;

2)按上述分段收费标准,小红家三、四月份分别交水费36元和19.8元,问四月份比三月份节约用水多少吨?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察猜想:

1)如图1,在RtABC中,∠ACB90°,∠BAC30°,点D与点C重合,点E在斜边AB上,连接DE,且DEAE,将线段DE绕点D顺时针旋转90°得到线段DF,连接EF,则______sinADE________

探究证明:

2)在(1)中,如果将点D沿CA方向移动,使CDAC,其余条件不变,如图2,上述结论是否保持不变?若改变,请求出具体数值:若不变,请说明理由.

拓展延伸

3)如图3,在△ABC中,∠ACB90°,∠CABa,点D在边AC的延长线上,EAB上任意一点,连接DEEDnAE,将线段DE绕着点D顺时针旋转90°至点F,连接EF.求sinADE的值分别是多少?(请用含有na的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法中正确的是(

A.同一平面内,过一点有且只有一条直线与已知直线平行

B.三张分别画有菱形、等边三角形、圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是

C.一组对边平行,一组对边相等的四边形是平行四边形

D.时,关于的方程有实数根

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,以直线为对称轴的抛物线与直线交于两点,与轴交于,直线轴交于点.

(1)求抛物线的函数表达式;

(2)设直线与抛物线的对称轴的交点为是抛物线上位于对称轴右侧的一点,若,且的面积相等,求点的坐标;

(3)若在轴上有且只有一点,使,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,点依次是边的四等分点,点依次是边的四等分点,分别以为边向下剪三个宽相等的矩形,如图所示.若图中空白部分的面积和为,则图中阴影部分的面积和是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线yax2+bx+ca<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:

①4a+2b<0;

②﹣1≤a

对于任意实数ma+bam2+bm总成立;

关于x的方程ax2+bx+cn﹣1有两个不相等的实数根.

其中结论正确的个数为(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案