【题目】如图①,AB是⊙O的直径,,连接AC.
(1)求证:∠CAB=45°;
(2)如图②,直线l经过点C,在直线l上取一点D,使BD=AB,BD与AC相交于点E,连接AD,且AD=AE.
①求证:直线l是⊙O的切线;
②求的值.
【答案】(1)证明见解析(2)①证明见解析②
【解析】
(1)连接BC,由知∠CAB=∠ABC,根据AB为⊙O的直径得∠ACB=90°,据此可得答案;(2)①连接OC、作DP⊥AB,设∠ABD=α,先根据AD=AE、BA=BD求得∠ABD=∠DAE=30°,据此知PD=BD=AB,结合OC=AB知DP=OC,据此证得四边形DPOC为矩形,继而得证;②证△ACD∽△BAE得==,据此知AE=CD,作EI⊥AB于点I,由∠CAB=45°、∠ABD=30°知BE=2EI=2×AE=AE=2CD,据此可得答案.
(1)如图①,连接BC,
∵,
∴∠CAB=∠ABC,
∵AB为⊙O的直径,
∴∠ACB=90°,
∴∠CAB=∠CBA=45°;
(2)①如图②,连接OC、作DP⊥AB于点P,
设∠ABD=α,
∵BA=BD,
∴∠BAD=∠BDA,
∵AD=AE,
∴∠ADE=∠AED,
∴∠AED=∠BAD,
∴∠DAE=∠DBA=α,
∵∠CAB=45°,
∴∠ADE=∠AED=∠CAB+∠ABD=45°+α,
∵∠DAE+∠ADE+∠AED=180°,
∴α+α+45°+α+45°=180°,
解得:α=30°,即∠ABD=∠DAE=30°,
在Rt△BPD中,PD=BD=AB,
又∵OC=AB,
∴OC=PD,
∵△ABC是等腰直角三角形,OA=OB,
∴CO⊥AB,
∵DP⊥AB、CO⊥AB,
∴四边形DPOC是矩形,
∴∠OCD=90°,
∴直线l是⊙O的切线;
②由①知,∠CAD=∠ABE=30°,CD∥AB,
∴∠ACD=∠EAB=45°,
则△ACD∽△BAE,
∴==,
∴AE=CD,
如图②,作EI⊥AB于点I,
∵∠CAB=45°、∠ABD=30°,
∴BE=2EI=2×AE=AE=×CD=2CD,
∴=.
科目:初中数学 来源: 题型:
【题目】在等边△AOB中,将扇形COD按图1摆放,使扇形的半径OC、OD分别与OA、OB重合,OA=OB=2,OC=OD=1,固定等边△AOB不动,让扇形COD绕点O逆时针旋转,线段AC、BD也随之变化,设旋转角为α.(0<α≤360°)
(1)当OC∥AB时,旋转角α= 度;
发现:(2)线段AC与BD有何数量关系,请仅就图2给出证明.
应用:(3)当A、C、D三点共线时,求BD的长.
拓展:(4)P是线段AB上任意一点,在扇形COD的旋转过程中,请直接写出线段PC的最大值与最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.
(1)求证:DE=OE;
(2)若CD∥AB,求证:BC是⊙O的切线;
(3)在(2)的条件下,求证:四边形ABCD是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2﹣x﹣.
(1)在平面直角坐标系内,画出该二次函数的图象;
(2)根据图象写出:①当x 时,y>0;
②当0<x<4时,y的取值范围为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线y=ax2(a<0)的图象上,则a的值为( )
A. B. C. ﹣2 D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.
(1)求顶点D的坐标(用含a的代数式表示);
(2)若以AD为直径的圆经过点C.
①求抛物线的函数关系式;
②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;
③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小梅家的阳台上放置了一个晒衣架如图1,图2是晒衣架的侧面示意图,A,B两点立于地面,将晒衣架稳固张开,测得张角∠AOB=62°,立杆OA=OB=140cm,小梅的连衣裙穿在衣架后的总长度为122cm,问将这件连衣裙垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由(参考数据:sin59°≈0.86,cos59°≈0.52,tan59°≈1.66)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABO为底角是30°的等腰三角形,OA=AB=4,O为坐标原点,点B在x轴上,点P在直线AB上运动,当线段OP最短时,点P的坐标为( )
A. (1,1) B. (,3) C. (3,) D. (2,2)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com