【题目】已知双曲线与直线相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线上的动点.过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线于点E,交BD于点C.
(1)若点D坐标是(-8,0),求A、B两点坐标及k的值.
(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.
(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.
【答案】解:(1)∵D(-8,0),∴B点的横坐标为-8,代入中,得y=-2.
∴B点坐标为(-8,-2).而A、B两点关于原点对称,∴A(8,2).
从而.
(2)∵N(0,-n),B是CD的中点,A、B、M、E四点均在双曲线上,
∴,B(-2m,-),C(-2m,-n),E(-m,-n).
S矩形DCNO,S△DBO=,S△OEN =,
∴S四边形OBCE= S矩形DCNO-S△DBO- S△OEN=k.∴.
由直线及双曲线,得A(4,1),B(-4,-1),
∴C(-4,-2),M(2,2).
设直线CM的解析式是,由C、M两点在这条直线上,得
解得.
∴直线CM的解析式是.
(3)如图,分别作AA1⊥x轴,MM1⊥x轴,垂足分别为A1、M1.
设A点的横坐标为a,则B点的横坐标为-a.于是
.
同理,
∴.
【解析】(1)根据B点的横坐标为-8,代入中,得,得出B点的坐标,即可得出A点的坐标,再根据求出即可;
分别作⊥轴,⊥轴,垂足分别为,设A点的横坐标为,则B点的横坐标为,于是,同理,即可得到结果。
科目:初中数学 来源: 题型:
【题目】李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:
阅读时间 (小时) | 2 | 2.5 | 3 | 3.5 | 4 |
学生人数(名) | 1 | 2 | 8 | 6 | 3 |
则关于这20名学生阅读小时数的说法正确的是( )
A. 众数是8 B. 中位数是3 C. 平均数是3 D. 方差是0.34
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:,点A、B分别在射线OM、ON上(A、B均不与重合),以AB为边在∠MON的内部作等边三角形ABC,连接OC.
(1)如图1,当OA=OB时,求证:平分.
(2)如图2,当OA≠OB时,过点C作CD⊥OM,CE⊥ON,垂足分别为D、E.求证:OD=OE.(注:四边形的内角和为)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在△ABC中,∠A=45°,AB=7,,动点P、D分别在射线AB、AC上,且∠DPA=∠ACB,设AP=x,△PCD的面积为y.
(1)求△ABC的面积;
(2)如图,当动点P、D分别在边AB、AC上时,求y关于x的函数解析式,并写出函数的定义域;
(3)如果△PCD是以PD为腰的等腰三角形,求线段AP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式.下列三个代数式:①(a﹣b)2;②ab+bc+ca;③a2b+b2c+c2a.其中是完全对称式的是( )
A. ①②③ B. ①③ C. ②③ D. ①②
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.
(1)若∠ABC=70°,则∠NMA的度数是 度.
(2)若AB=8cm,△MBC的周长是14cm.
①求BC的长度;
②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一节数学活动课上,王老师将本班学生身高数据(精确到1厘米)出示给大家,要求同学们各自独立绘制一幅频数分布直方图,甲绘制的如图①所示,乙绘制的如图②所示,经王老师批改,甲绘制的图是正确的,乙在数据整理与绘图过程中均有个别错误.
(1)写出乙同学在数据整理或绘图过程中的错误(写出一个即可);
(2)甲同学在数据整理后若用扇形统计图表示,则159.5﹣164.5这一部分所对应的扇形圆心角的度数为 ;
(3)该班学生的身高数据的中位数是 ;
(4)假设身高在169.5﹣174.5范围的5名同学中,有2名女同学,班主任老师想在这5名同学中选出2名同学作为本班的正、副旗手,那么恰好选中一名男同学和一名女同学当正,副旗手的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某条公共汽车线路收支差额与乘客量的函数关系如图所示(收支差额车票收入支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变支出费用,提高车票价格;建议(Ⅱ)不改变车票价格,减少支出费用. 下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则( )
④ ③ ② ①
A. ①反映了建议(Ⅰ),③反映了建议(Ⅱ) B. ②反映了建议(Ⅰ),④反映了建议(Ⅱ)
C. ①反映了建议(Ⅱ),③反映了建议(Ⅰ) D. ②反映了建议(Ⅱ),④反映了建议(Ⅰ)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com