精英家教网 > 初中数学 > 题目详情

【题目】已知:,点AB分别在射线OMON(A、B均不与重合),以AB为边在∠MON的内部作等边三角形ABC,连接OC.

1)如图1,当OA=OB时,求证:平分.

2)如图2,当OAOB时,过点CCDOMCEON,垂足分别为DE.求证:OD=OE.(注:四边形的内角和为)

【答案】1)见解析;(2)见解析

【解析】

1)由等边三角形的性质可得AC=BC,利用SSS可证明△ACO≌△BCO,可得∠AOC=BOC,即可得OC平分∠MON

2)由垂直的定义可得∠ODC=CEB=90°,根据四边形内角和为360°可得∠DCE=60°,根据角的和差关系可得∠ACD=BCE,利用AAS可证明△ACD≌△BCE,可得CD=CE,利用HL可证明△OCD≌△OCE,即可证明OD=OE.

1)∵△ABC是等边三角形,

AC=BC

在△ACO和△BCO中,

∴△ACO≌△BCOSSS),

∴∠AOC=BOC,即OC平分∠MON.

2)∵

,且四边形的内角和为

∵△ABC是等边三角形,

AC=BC,∠ACB=60°

∴∠DCE-ACE=ACB-ACE,即∠ACD=BCE

在△ACD和△BCE中,

∴△ACD≌△BCEAAS),

RtOCDRtOCE中,

∴△OCD≌△OCEHL),

OD=OE.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.

(1)求证:△ABG≌△C′DG;

(2)求tan∠ABG的值;

(3)求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:在平面直角坐标系中,每个小正方形的边长为1,ABC的顶点都在格点上,点A的坐标为(-3,2).请按要求分别完成下列各小题:

(1)把ABC向下平移7个单位,再向右平移7个单位,得到A1B1C1,画出A1B1C1

(2)画出A1B1C1关于x轴对称的A2B2C2

画出A1B1C1关于y轴对称的A3B3C3

(3)求ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】创卫工作人人参与,环境卫生人人受益,我区创卫工作已进入攻坚阶段某校拟整修学校食堂,现需购买A、B两种型号的防滑地砖共60块,已知A型号地砖每块80元,B型号地砖每块40元

1若采购地砖的费用不超过3200元,那么,最多能购买A型号地砖多少块?

2某地砖供应商为了支持创卫工作,现将A、B两种型号的地砖单价都降低a%,这样,该校花费了2560元就购得所需地砖,其中A型号地砖a块,求a的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两辆汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),st之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠MON=45°P为∠MON内一点,AOM上一点,BON上一点,当PAB的周长取最小值时,∠APB的度数为( )

A.80°B.90°C.110°D.120°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知双曲线与直线相交于A、B两点.第一象限上的点M(m,n)(A点左侧)双曲线的动点.过B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线于点E,交BD于点C.

(1)若点D坐标是(-8,0),求A、B两点坐标及k的值

(2)B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式

(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求pq的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AD∥BC,若∠DAB的角平分线AECDE,连接BE,且BE边平分∠ABC,则以下命题不正确的个数是①BC+AD=AB;②ECD中点;③∠AEB=90°;④SABE=S四边形ABCD;⑤BC=CE.(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点DE分别在ACD的边ABAC上,已知DEBCDEDB

(1)请用直尺和圆规在图中画出点D和点E(保留作图痕迹,不要求写作法),并证明所作的线段DE是符合题目要求的;

(2)若AB=7,BC=3,请求出DE的长.

查看答案和解析>>

同步练习册答案