【题目】如图,△ABC中,∠C=90°,⊙I为△ABC的内切圆,点O为△ABC的外心,BC=6,AC=8.
(1)求⊙I的半径;
(2)求线段OI的长.
【答案】(1)2;(2).
【解析】
(1)首先设⊙I的半径为r,由△ABC中,∠C=90゜,BC=6,AC=8,可求得AB的长,又由S△ABC=ACBC=(AB+AC+BC)·r,即可求得答案;
(2)首先设⊙I与△ABC的三边分别切于点D,E,F,连接ID,IE,IF,由切线长定理可求得BD的长,又由点O为△ABC的外心,可求得OB的长,即可求得OD的长,然后由勾股定理求得答案.
(1)设⊙I的半径为r,
∵△ABC中,∠C=90゜,BC=6,AC=8,
∴AB==10,
∴S△ABC=ACBC=(AB+AC+BC)r,
∴r==2;
(2)设⊙I与△ABC的三边分别切于点D,E,F,连接ID,IE,IF,
∴∠IEC=∠IFC=90°,
∵∠C=90°,
∴四边形IECF是矩形,
∵IE=IF,
∴四边形IECF是正方形,
∴CE=IE=2,
∴BD=BE=BC﹣CE=6﹣2=4,
∵点O为△ABC的外心,
∴AB是直径,
∴OB=AB=5,
∴OD=OB﹣BD=5﹣4=1,
∴OI=.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,轴,轴,点在x轴上,A(1,2),B(-1,2),D(-3,0),E(-3,-2),G(3,-2)把一条长为2018个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A-B-D-E-F-G-H-P-A…的规律紧绕在图形“凸”的边上,则细线另一端所在位置的点的坐标是()
A.(1,1)B.(1,2)
C.(1,2)D.(1,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限且OC=5,点B在x轴的正半轴上且OB=6,∠OAB=90°且OA=AB.
(1)求点A和点B的坐标;
(2)点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线l与y轴平行,直线l交边OA成边AB于点Q,交边OC或边CB于点R,设点P的横坐标为t,线段QR的长度为m,已知t=4时,直线l恰好过点C,当0<t<3时,求m关于t的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】画图并填空:
如图,△ABC的顶点都在方格纸的格点上,将△ABC向下平移2倍,再向右平移3格.
(1)请在图中画出平移后的△A′B′C′;
(2)在图中画出△的A′B′C′的高C′D′(标出点D′的位置);
(3)如果每个小正方形边长为1,则△A′B′C′的面积= .(答案直接填在题中横线上)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点分别按下列要求画图:
(1)画一条线段MN,使MN=;
(2)画△ABC,三边长分别为3,,.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=kx2+(2k-1)x-1与x轴交点的横坐标为x1,x2(x1<x2),则对于下列结论:(1) 当x= -2时,y=1;(2) 当x> x2时,y>0;(3)方程kx2+(2k-1)x-1=0有两个不相等的实数根x1,x2;(4) x1<-1,x2>-1;(5) x2 -x1 = ,其中正确的结论有_______(只需填写序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠A=90°,AD⊥BC,垂足为D.给出下列四个结论:①sinα=sinB;②sinβ=sinC;③sinB=cosC;④sinα=cosβ.其中正确的结论有_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com