精英家教网 > 初中数学 > 题目详情
17.计算:${({-2})^3}×\sqrt{{{({-4})}^2}}+\root{3}{{{{({-4})}^3}}}×{({-\frac{1}{2}})^2}$.

分析 原式利用二次根式以及立方根的性质计算即可得到结果.

解答 解:原式=-8×4-4×$\frac{1}{4}$=-32-1=-33.

点评 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.在△ABC中,∠C=90°,根据下列条件解直角三角形:
(1)∠B=60°,a=3$\sqrt{3}$
(2)c=10,∠B=45°
(3)a=3$\sqrt{2}$,b=3$\sqrt{6}$
(4)∠A=2∠B,c-b=8.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知关于x的一元二次方程2x2+(k+2)x-6=0的一个根是2,求方程的另一个根和k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.若a2-ka+144是完全平方式,则常数k的值为(  )
A.24B.12C.±12D.±24

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在△ABD中,∠D=90°,点C在BD上,BC=2,AC=BD,$sin∠CAD=\frac{3}{5}$. 求:
(1)DC的长;
(2)cosB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.阅读理解题:一次数学兴趣小组的活动课上,师生有下面一段对话,请你阅读完后再解答下面问题
老师:同学们,今天我们来探索如下方程的解法:(x2-x)2-8(x2-x)+12=0
学生甲:老师,先去括号,再合并同类项,行吗?
老师:这样,原方程可整理为x4-2x3-7x2+8x+12=0,次数变成了4次,用现有的知识无法解答.同学们再观察观察,看看这个方程有什么特点?
学生乙:我发现方程中x2-x是整体出现的,最好不要去括号!
老师:很好.如果我们把x2-x看成一个整体,用y来表示,那么原方程就变成y2-8y+12=0
全体同学:咦,这不是我们学过的一元二次方程吗?
老师:大家真会观察和思考,太棒了!显然一元二次方程y2-8y+12=0的解是y1=6,y2=2,就有x2-x=6或x2-x=2
学生丙:对啦,再解这两个方程,可得原方程的根x1=3,x2=-2,x3=2,x4=-1,嗬,有这么多根啊
老师:同学们,通常我们把这种方法叫做换元法.在这里,使用它最大的妙处在于降低了原方程的次数,这是一种很重要的转化方法
全体同学:OK!换元法真神奇!
现在,请你用换元法解下列分式方程($\frac{x}{x-1}$)2-5($\frac{x}{x-1}$)-6=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.
(1)求证:△ABE≌△CAD;
(2)求∠BPQ的度数;
(3)求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C,D是垂足,连接CD,与∠AOB的平分线交于点F,
求证:OE是CD的垂直平分线.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.要使式子$\sqrt{2x-5}$有意义,字母x的取值必须满足x≥$\frac{5}{2}$.

查看答案和解析>>

同步练习册答案