17£®£¨1£©$\sqrt{{2}^{2}}$=2£¬$\sqrt{2£®{5}^{2}}$=2.5£¬$\sqrt{£¨-3£©^{2}}$=3£¬$\sqrt{{0}^{2}}$=0£¬$\sqrt{£¨\frac{3}{5}£©^{2}}$=$\frac{3}{5}$£¬$\sqrt{£¨-\frac{2}{3}£©^{2}}$=$\frac{2}{3}$£®
Çë¸ù¾Ý¼ÆËã½á¹û£¬»Ø´ð£º
£¨2£©$\sqrt{{a}^{2}}$Ò»¶¨µÈÓÚaÂð¡¢Äã·¢ÏÖÆäÖÐÓÐʲô¹æÂÉÁËÂð£¿ÇëÓÃ×Ô¼ºµÄÓïÑÔÃèÊö³öÀ´£®
ÀûÓÃÄã×ܽáµÄ¹æÂɼÆË㣺
¢Ù$\sqrt{£¨2-\sqrt{5}£©^{2}}$=$\sqrt{5}$-2£»
¢ÚÈôa-4£¾0£¬ÊÔ»¯¼ò$\sqrt{{a}^{2}-6a+9}$+|4-a|µÄ½á¹ûÊÇ2a-7£®

·ÖÎö £¨1£©Ö»ÐèÒÀ¾ÝËãÊõƽ·½¸ùµÄ¶¨Òå¾Í¿É½â¾öÎÊÌ⣻
£¨2£©¸ù¾Ý¼ÆËã½á¹û¿ÉÒÔ·¢ÏÖÒ»¸öÊýµÄƽ·½µÄËãÊõƽ·½¸ùµÈÓÚÕâ¸öÊýµÄ¾ø¶ÔÖµ£¬È»ºóÀûÓÃÕâ¸ö·¢Ï־Ϳɽâ¾öÎÊÌ⣮

½â´ð ½â£º£¨1£©$\sqrt{{2}^{2}}$=2£¬$\sqrt{2£®{5}^{2}}$=2.5£¬$\sqrt{£¨-3£©^{2}}$=3£¬$\sqrt{{0}^{2}}$=0£¬$\sqrt{£¨\frac{3}{5}£©^{2}}$=$\frac{3}{5}$£¬$\sqrt{£¨-\frac{2}{3}£©^{2}}$=$\frac{2}{3}$£®
¹Ê´ð°¸·Ö±ðΪ£º2£¬2.5£¬3£¬0£¬$\frac{3}{5}$£¬$\frac{2}{3}$£»

£¨2£©$\sqrt{{a}^{2}}$²»Ò»¶¨µÈÓÚa£¬ÎÒ·¢ÏÖÒ»¸öÊýµÄƽ·½µÄËãÊõƽ·½¸ùµÈÓÚÕâ¸öÊýµÄ¾ø¶ÔÖµ£»
¢Ù$\sqrt{£¨2-\sqrt{5}£©^{2}}$=|2-$\sqrt{5}$|=$\sqrt{5}$-2£»
¢Ú¡ßa-4£¾0£¬¡àa-3£¾0£¬4-a£¼0£¬
¡à$\sqrt{{a}^{2}-6a+9}$+|4-a|=$\sqrt{£¨a-3£©^{2}}$+|4-a|=|a-3|+|4-a|=a-3+a-4=2a-7£®
¹Ê´ð°¸Îª¢Ù$\sqrt{5}$-2£¬¢Ú2a-7£®

µãÆÀ ±¾ÌâÊôÓÚ¹æÂÉ̽¾¿Ì⣬Ö÷Òª¿¼²éÁËËãÊõƽ·½¸ùµÄ¶¨Òå¡¢¾ø¶ÔÖµ»¯¼òµÈ֪ʶ£¬ÔËÓ÷¢ÏֵĹæÂɽâ¾öÎÊÌâÊǽâ¾öµÚ£¨2£©Ð¡ÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Èô¹ØÓÚxµÄ·½³Ì$\frac{2}{3}$x2-2a=0µÄÒ»¸ö¸ùÊÇ3£¬ÔòaµÄÖµÊÇ£¨¡¡¡¡£©
A£®3B£®4C£®5D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÅжÏx=-2£¬x=4ÊDz»ÊÇ·½³Ì$\frac{1}{2}$x+1=x-1µÄ½â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÀûÓõÈʽµÄÐÔÖʽâÏÂÁз½³Ì£¬²¢¿ÚËã¼ìÑ飺
£¨1£©x-5=6£»
£¨2£©3x=45£»
£¨3£©-$\frac{1}{4}$x=3£»
£¨4£©0.5x=0.4x-5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Ä³Í¬Ñ§ÔÚ½â´ð£º¡°ÒÑÖªA=3a-2b£¬B=2a-3b£¬ÇóA-B¡±Ê±£¬ÒòΪ̫´ÖÐÄ£¬Íü¼ÇÁ˼ÓÀ¨ºÅ£¬ÄãÖªµÀËûµÄ´íÎóµÄ½á¹ûÂð£¿ÇëÄã°ïÖúËû¾ÀÕý´íÎó£¬Ëã³öÕýÈ·µÄ½á¹û£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÏÈÈ¥À¨ºÅ£¬Ôٺϲ¢Í¬ÀàÏ2£¨x2-2y£©-$\frac{1}{2}$£¨6x2-12y£©+10£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªÏÂÁÐÓï¾ä£º
¢Ùƽ½Ç¶¼ÏàµÈ£»¢Ú»­Á½¸öÏàµÈµÄ½Ç£»¢ÛÁ½Ö±Ï߯½ÐУ¬Í¬Î»½ÇÏàµÈ£»¢ÜµÈÓÚͬһ¸ö½ÇµÄÁ½¸ö½ÇÏàµÈÂ𣻢ÛÁÚ²¹½ÇµÄƽ·ÖÏß»¥Ïà´¹Ö±£»¢ÛµÈÑüÈý½ÇÐεÄÁ½¸öµ×½ÇÏàµÈ£¬
ÆäÖÐÊÇÃüÌâµÄÓТ٢ۢݢޣ¨ÌîÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Èý½ÇÐεÄÖܳ¤Îªa£¬ËüµÄÒ»±ß³¤ÊÇÖܳ¤µÄ$\frac{1}{4}$£¬ÁíÒ»±ß³¤ÊÇÖܳ¤Óë4µÄ²îµÄÒ»°ë£¬ÔòµÚÈý±ßµÄ³¤Îª£¨¡¡¡¡£©
A£®$\frac{1}{2}$£¨a-4£©B£®$\frac{1}{4}$a-2C£®$\frac{1}{4}$a+2D£®$\frac{3}{4}$a+2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®°Ñ¾ØÐζÔÕۺ󣬺ÍÔ­À´µÄ¾ØÐÎÏàËÆ£¬ÄÇôÕâ¸ö¾ØÐεij¤¡¢¿íÖ®±ÈΪ£¨¡¡¡¡£©
A£®2£º1B£®4£º1C£®$\sqrt{2}$£º1D£®$\frac{3}{2}$£º1

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸