【题目】下列函数关系式中,二次函数的个数有( )
(1)y=3(x-1)2+1 (2)y=(3)S=3-2t2 (4)y= x4+2x2-1 (5)y=3x(2-x)+ 3x2 (6) y=mx2+x
A.1个B.2个C.3个D.4个
科目:初中数学 来源: 题型:
【题目】如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12m,设AD的长为m,DC的长为m。
(1)求与之间的函数关系式;
(2)根据实际情况,对于(1)式中的函数自变量能否取值为4m,若能,求出的值,若不能,请说明理由;
(3)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫做格点.三角形ABC的三个顶点均在格点上,以点A为圆心的弧EF与BC相切于格点D,分别交AB,AC于点E,F.
(1)直接写出三角形ABC边长AB= ;AC= ;BC= .
(2)求图中由线段EB,BC,CF及弧FE所围成的阴影部分的面积.(结果保留π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,点P在AD上,AB=2,AP=1.直角尺的直角顶点放在点P处,直角尺的两边分别交AB、BC于点E、F,连接EF(如图1).
(1)当点E与点B重合时,点F恰好与点C重合(如图2).
①求证:△APB∽△DCP;
②求PC、BC的长.
(2)探究:将直角尺从图2中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中(图1是该过程的某个时刻),观察、猜想并解答:
① tan∠PEF的值是否发生变化?请说明理由.
② 设AE=x,当△PBF是等腰三角形时,请直接写出x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小贤与小杰在探究某类二次函数问题时,经历了如下过程:
求解体验:
(1)已知抛物线y=﹣x2+bx﹣3经过点(﹣1,0),则b= ,顶点坐标 ,该抛物线关于点(0,1)成中心对称的抛物线的表达式是 .
抽象感悟:
我们定义:对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y',则我们又称抛物线y'为抛物线y的“衍生抛物线”,点M为“衍生中心”.
(2)已知抛物线y=﹣x2﹣2x+5关于点(0,m)的衍生抛物线为y',若这两条抛物线有交点,求m的取值范围.
问题解决:
(3)已知抛物线y=ax2+2ax﹣b(a≠0)若抛物线y的衍生抛物线为y'=bx2﹣2bx+a2(b≠0),两抛物线有两个交点,且恰好是它们的顶点,求a,b的值及衍生中心的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于圆O ,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F.
(1)若∠E=500, ∠F=400,求∠A的度数.
(2)探究∠E、∠F、∠A的关系并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C为△ABD外接圆上的一动点(点C不在上,且不与点B,D重合),∠ACB=∠ABD=45°.
(1)求证:BD是该外接圆的直径;
(2)连结CD,求证:AC=BC+CD;
(3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究,三者之间满足的等量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=120°,AB=AC=6,D为边AB上一动点(不与B点重合),连接CD,将线段CD绕着点D逆时针旋转90°得到DE,连接BE,则S△BDE的最大值为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com