精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形中,,点分别在上,相交于点,若图中阴影部分的面积与正方形的面积之比为,则的周长为( )

A.B.C.D.

【答案】D

【解析】

根据阴影部分的面积与正方形ABCD的面积之比为23,得出阴影部分的面积为6,空白部分的面积为3,进而依据△BCG的面积以及勾股定理,得出BGCG的长,进而得出其周长.

∵阴影部分的面积与正方形ABCD的面积之比为23

∴阴影部分的面积为×96

∴空白部分的面积为963

CEDFBCCD,∠BCE=∠CDF90°,

可得△BCE≌△CDF

∴△BCG的面积与四边形DEGF的面积相等,均为×3,∠CBE=∠DCF

∵∠DCF+∠BCG90°,

∴∠CBG+∠BCG90°,即∠BGC90°,

BGaCGb,则ab

又∵a2b232

a22abb29615

即(ab215

ab,即BGCG

∴△BCG的周长=3

故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,有一个数字迷宫,﹣2在迷宫的第一个拐角,3在第2个拐角,5在第3个拐角,7在第4个拐角,那么第101个拐角是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4acb23a+c>0;③方程 的两个根是x1=﹣1,x2=3;④当y>0时,x的取值范围是﹣1<x<3⑤当x>0时,yx的增大而减小.其中结论正确的个数是(

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80 m,DE=10 m,求障碍物B,C两点间的距离.(结果精确到0.1 m)(参考数据: ≈1.414,、≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,C为线段AD上一点,点BCD的中点,且AD=8cmBD=2cm.

(1)AC的长

(2)若点E在直线AD上,且EA=3cm,求BE的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了做好大课间活动,计划用400元购买10件体育用品,备选体育用品及单价如下表(单位:元)

备选体育用品

篮球

排球

羽毛球拍

单价(元)

50

40

25

(1)400元全部用来购买篮球和羽毛球拍共10件,问篮球和羽毛球拍各购买多少件?

(2)400元全部用来购买篮球、排球和羽毛球拍三种共10件,能实现吗?(若能实现直接写出一种答案即可,若不能请说明理由.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数轴上有三个点A,B,C,表示的数分别是﹣4,﹣2,3.

(1)若使C、B两点的距离是A、B两点的距离的2倍,则需将点C向左移动   个单位;

(2)点A、B、C开始在数轴上运动,若点A以每秒a个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动时间为t秒:

点A、B、C表示的数分别是          (用含a、t的代数式表示);

若点B与点C之间的距离表示为d1,点A与点B之间的距离表示为d2,当a为何值时,5d1﹣3d2的值不会随着时间t的变化而改变,并求此时5d1﹣3d2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“五一”期间,文具店老板购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:

型号

进价(元/只)

售价(元/只)

A型

10

14

B型

15

22

(1)老板如何进货,能使进货款恰好为1350元?

(2)要使销售文具所获利润不少于500元,那么老板最多能购进A型文具多少只?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC三个顶点的位置如图所示,现将△ABC平移,使点A移动到点A',点BC的对应点分别是点B'、C'.

1)△ABC的面积是   

2)画出平移后的△A'B'C';

3)若连接AA'、CC′,这两条线段的关系是   

查看答案和解析>>

同步练习册答案