【题目】如图,在四边形中,点和点是对角线上的两点,,且,过点作交的延长线点.
(1)求证:四边形是平行四边形;
(2)若,,则的面积是 .
【答案】(1)见解析;(2)
【解析】
(1)根据已知条件得到AF=CE,根据平行线的性质得到∠DFA=∠BEC,利用SAS证明△ADF≌△CBE,根据全等三角形的性质得到AD=CB,∠DAF=∠BCE,根据平行线的判定得到AD∥CB,即可得到结论;
(2)在直角△BCG中解直角三角形求得BG、CG,在直角△ACG中解直角三角形求得AG,然后根据平行四边形的面积公式即可得到结论.
解:(1)证明:∵AE=CF,
∴AE+EF=CF+EF,即AF=CE,
∵DF∥BE,
∴∠DFA=∠BEC,
∵DF=BE,
∴△ADF≌△CBE(SAS),
∴AD=CB,∠DAF=∠BCE,
∴AD∥CB,
∴四边形ABCD是平行四边形;
(2)∵CG⊥AB,
∴∠G=90°,
∵∠CBG=60°,BC=,
∴BG=BC=,CG=BC·sin60°=,
∵,即,
∴AG=,
∴AB=AG-BG=,
∴ABCD的面积=AB·CG=×6=.
科目:初中数学 来源: 题型:
【题目】如图,点O为斜边AB上的一点,以OA为半径的与BC切于点D,与AC交于点E,连接AD.
(1)求证:AD平分
(2)若,,求阴影部分的面积.(结果保留)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数 y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:
(1)写出方程ax2+bx+c=0(a≠0)的实数解;
(2)若方程ax2+bx+c=k有两个不相等的实数根,写出 k的取值范围;
(3)当0<x<3 时,写出函数值y的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【问题提出】如图1,四边形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=2,BC=1,求四边形ABCD的面积.
【尝试解决】
旋转是一种重要的图形变换,当图形中有一组邻边相等时,往往可以通过旋转解决问题.
(1)如图2,连接 BD,由于AD=CD,所以可将△DCB绕点D顺时针方向旋转60°,得到△DAB′,则△BDB′的形状是 .
(2)在(1)的基础上,求四边形ABCD的面积.
[类比应用]如图3,四边形ABCD中,AD=CD,∠ABC=75°,∠ADC=60°,AB=2,BC=,求四边形ABCD的面积.
考点:几何变换综合题.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,二次函数y=x2+ ( 2k-1)x+k+1的图象与x轴相交于O、A两点,
(1)求这个二次函数的解析式
(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6.求点B的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】新定义:对于关于的函数,我们称函数为函数y的m分函数(其中m为常数).
例如:对于关于x一次函数的分函数为
(1)若点在关于x的一次函数的分函数上,求的值;
(2)写出反比例函数的分函数的图象上y随x的增大而减小的x的取值范围: ;
(3)若是二次函数关于x的分函数,
①当时,求y的取值范围;
②当时,,则的取值范围为 ;
③若点,连结,当关于的二次函数的分函数,与线段MN有两个交点,直接写出m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.
(1)求证:∠AEB=∠ADC;
(2)连接DE,若∠ADC=105°,求∠BED的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)中的x与y的部分对应值如下表:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | … |
给出以下结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;(2)当﹣<x<2时,y<0;(3)已知点A(x1,y1)、B(x2,y2)在函数的图象上,则当﹣1<x1<0,3<x2<4时,y1>y2.上述结论中正确的结论个数为( )
A.0B.1C.2D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为4,2,反比例函数y(x>0)的图象经过A,B两点,若菱形ABCD的面积为2,则k的值为( )
A. 2B. 3C. 4D. 6
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com