精英家教网 > 初中数学 > 题目详情

【题目】 如图,直线轴于点,交轴于点,抛物线经过点,交轴于点.点为抛物线上一动点,过点轴的垂线,交直线于点,设点的横坐标为

1)求抛物线的解析式;

2)当点在直线下方的抛物线上运动时,求线段长度的最大值;

3)若点是平面内任意一点,是否存在点,使以为顶点的四边形为菱形?若存在,请直接出的值;若不存在,请说明理由.

【答案】(1);(2)当时,线段的长度有最大值,为;(3)存在,的值为

【解析】

1)先根据直线解析式求得点A的坐标,再将点AB的坐标代入抛物线的解析式中即可得到答案;(2)根据PDx轴知点P的横坐标为m,由点D与点P所在的位置表示两点的坐标,得到线段PD的二次函数解析式,利用顶点式解析式即可求得最大值;(3)当四边形为菱形时四条边相等,故△BCP为等腰三角形,分三种情况,根据两边相等求得m

解:(1)对于

,得

代入

解得

故抛物线的解析式为

2)易得

在直线下方的抛物线上,

时,线段的长度有最大值,为

3)存在,的值为

解法提示:当以为顶点的四边形为菱形时,必为等腰三角形.

分以下三种情况讨论.

①当时,

解得(不合题意,舍去),

②当时,

解得

③当时,

综上可知,的值为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了充分利用空间,在确定公园的设计方案时,准备利用公园的一角∠MON两边为边,用总长为16m的围栏在公园中围成了如图所示的①②③三块区域,其中区域①为直角三角形,区城②③为矩形,而且这三块区城的面积相等.

(1)设OB的长度为xm,则OE+DB的长为   m

(2)设四边形OBDG的面积为ym2,求yx之间的函数关系式;

(3)x为何值时,y有最大值?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的纸箱里有分别标有汉字”“”“”“的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先摇匀再摸球.

1)若从中任取一个球,求摸出球上的汉字刚好是字的概率.

2)小红从中任取球,不放回,再从中任取一球,请用树状图或列表法,求小红取出的两个球上的汉字恰好能组成爱国祖国的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C120°.若新建墙BCCD总长为12m,则该梯形储料场ABCD的最大面积是(

A.18m2B.m2C.m2D.m2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问锯几何?”用现代的数学语言表述是:“如图,CD为O的直径,弦ABCD垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意,CD长为(

A.12寸 B.13寸 C.24寸 D.26寸

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,ECD上一点,若ADE沿直线AE翻折,使点D落在BC边上点处,FAD上一点,且EFBD相交于点GBD相交于点HHG=2,BD=__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线轴交于点,对称轴为直线,与轴交点之间(包含这两个点)运动,有如下四个结论:

①抛物线与轴的另一个交点是

②点在抛物线上,且满足,则

③常数项的取值范围是

④系数的取值范围是.

上述结论中所有正确结论的序号是(

A.①②③B.②③④C.①③D.①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=﹣x+x轴交于AB两点,与y轴交于点C,点D为抛物线的顶点,抛物线的对称轴与直线AC交于点E

1)若点P为直线AC上方抛物线上的动点,连接PCPE,当PCE的面积SPCE最大时,点P关于抛物线对称轴的对称点为点Q,此时点T从点Q开始出发,沿适当的路径运动至y轴上的点F处,再沿适当的路径运动至x轴上的点G处,最后沿适当的路径运动至直线AC上的点H处,求满足条件的点P的坐标及QF+FG+AH的最小值.

2)将BOC绕点B顺时针旋转120°,边BO所在直线与直线AC交于点M,将抛物线沿射线CA方向平移个单位后,顶点D的对应点为D′,点Ry轴上,点N在坐标平面内,当以点D′RMN为顶点的四边形是菱形时,请直接写出N点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点.

1)画出绕点逆时针旋转后的图形,并写出点的坐标;

2)将(1)中所得先向左平移4个单位,再向上平移2个单位得到,画出,并写出点的坐标;

3)若可以看作绕某点旋转得来,直接写出旋转中心的坐标.

查看答案和解析>>

同步练习册答案