【题目】如图,矩形ABCD中∠BAC=60°,以点A为圆心,以任意长为半径作弧分别交AB,AC于点M,N两点,再分别以点M,N为圆心,以大于MN的长为半径作弧交于点P,作射线AP交BC于点E,若BE=2cm,则CE的长为( )
A.6cmB.6cmC.4cmD.4cm
科目:初中数学 来源: 题型:
【题目】 如图,在平面直角坐标系中,点A的坐标为(6,),AB⊥x轴于点B,AC⊥y轴于点C,连接BC.点D是线段AC的中点,点E的坐标为(0,),点F是线段EO上的一个动点.过点A,D,F的抛物线与x轴正半轴交于点G,连接DG交线段AB于点M.
(1)求∠ACB的度数;
(2)当点F运动到原点时,求过A,D,F三点的抛物线的函数表达式及点G的坐标;
(3)以线段DM为一边作等边三角形DMP,点P与点A在直线DG同侧,当点F从点E运动到点O时,请直接写出点P运动的路径的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两个袋中均有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标的数值分别为﹣7,﹣1,3,乙袋中的三张卡片上所标的数值分别为﹣2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上标的数值,再从乙袋中随机取出一张卡片,用y表示取出的卡片上标的数值,把x、y分别作为点A的横坐标、纵坐标.
(1)用适当的方法写出点A(x,y)的所有情况;
(2)求点A落在第二象限的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N是CD的中点,已知OA=2,且OA:AD=1:3.
(1)求抛物线的解析式;
(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;
(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为?若存在,求出点P的坐标;若不存在,请说明理由;
(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y1=ax+b(a≠0)与反比例函数y2=(k>0),两函数图象交于(4,1),(﹣2,n)两点.
(1)求a,k的值;
(2)若y2>y1>0,求x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】东营市某学校九年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”、“其他”四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,回答下列问题:
类别 | 频数(人数) | 频率 |
小说 | 0.5 | |
戏剧 | 4 | n |
散文 | 10 | 0.25 |
其他 | 6 | |
合计 | m | 1 |
(1)计算m= ,n= .
(2)在扇形统计图中,“其他”类所在的扇形圆心角为 ;
(3)这个学校共有1000人,则读了戏剧类书籍的学生大约有多少人?
(4)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=上,且OA⊥OB,,BC、AD垂直于x轴于C、D,则k的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,,,点是直线上一动点,点是直线上动点,点是直线上一动点,且,.
(1)如图1,当点,,分别在,,边上时,请你判断线段,,之间有怎样的数量关系?请直接写出你的结论;
(2)如图2,当在延长线上,在延长线上,在延长线上时,(1)中的结论是否成立?若成立,请利用图2证明;若不成立,请判断线段,,之间有怎样的数量关系?并证明你的结论;
(3)若,当时,请直接写出的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC (BC>AD),∠D=90°,∠ABE=45°,BC=CD,
若AE=5,CE=2,则BC的长度为_________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com