精英家教网 > 初中数学 > 题目详情

【题目】十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,请你观察下列几种简单多面体模型,解答下列问题:

1 2

探索新知如图1,(1)根据上面多面体模型,完成表格中的空格;

多面体

顶点数(V

面数(F

棱数(E

四面体

4

4

长方体

8

6

12

正八面体

8

12

正十二面体

20

12

30

你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是   

(2)根据以上关系式猜想是否存在一个多面体,它有16个面,50条棱,34个顶点?并写出理由。

(实际应用)如图2,足球一般有32块黑白皮子缝合而成黑色的是正五边形,白色的是正六边形,如

果我们近似把足球看成一个多面体.

(1)设黑色的正五边形有x块,则白色的正六边形有(32﹣x块,当把足球看成一个多面体时,它的棱数是  它的顶点数是  

(2)求出黑皮和白皮各有多少块

【答案】【探索新知】(1)6,6,V+FE=2;(2)不存在;

【实际应用】(1)﹣x+96,;﹣x+64,(2)正五边形有12块,正六边形有20块.

【解析】

探索新知(1)观察图形即可得出结论;观察可得顶点数+面数-棱数=2;
(2)代入(1)中的式子即可验证.

实际应用(1)直接利用欧拉公式求出答案;

(2)根据题意可知:本题中的等量关系是黑白皮块32和因为每块白皮有3条边与黑边连在一起,所以黑皮只有(32-x)块,而黑皮共有边数为5x块,依此借助欧拉公式列方程求解即可.

探索新知(1)观察表格可以看出:顶点数+面数棱数=2,关系式为:V+FE=2;

多面体

顶点数(V)

面数(F)

棱数(E)

四面体

4

4

6

长方体

8

6

12

正八面体

6

8

12

正十二面体

20

12

30

(2)由题意知,V=34,F=16,E=50,不符合关系式:V+FE=2.故没有这样的多边形.

实际应用(1)设正五边形有x块,则正六边形有32x块,

F=32,E=5x+= x+96

V=E÷3×2=+64

(2)根据欧拉公式得:V+FE=2,

x+64+32(x+96)=2,

解得:x=12,32x=20,

所以,正五边形有/span>12块,正六边形有20.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】ABC中,DAB边上的一点,过点DDEBC,ABC的角平分线于点E.

(1)如图1,当点E恰好在AC边上时,求证:∠ADE=2DEB;

(2)如图2,当点DBA的延长线上时,其余条件不变,请直接写出∠ADE与∠DEB之间的数量关系,并说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过FDEBC,交AB于点D,交AC于点E.若BD=4,DE=7,则线段EC的长为(  )

A. 3 B. 4 C. 3.5 D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,三角形ABC(记作△ABC)在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到A1B1C1

(1)在图中画出△A1B1C1

(2)点A1,B1,C1的坐标分别为         

(3)若y轴有一点P,使△PBC与△ABC面积相等,求出P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果事件A发生的概率是 ,那么在相同条件下重复试验,下列4种陈述中,不正确的有 ①说明做100次这种试验,事件A必发生1次
②说明事件A发生的频率是
③说明做100次这种试验中,前99次事件A没发生,后1次事件A才发生
④说明做100次这种试验,事件A可能发生1次(
A.①、②、③
B.①、②、④
C.②、③、④
D.①、②、③、④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,将长方形ABCD沿直线BD折叠,使点C落在点C′处,BC′AD于点E,AD=16,AB=8,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某人到岛上去探宝,从A处登陆后先往东走4 km,又往北走1.5 km,遇到障碍后又往西走2 km,再折回向北走到4.5 km处往东一拐,仅走0.5 km就找到宝藏.问登陆点A与宝藏埋藏点B之间的距离是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据要求画图,并回答问题.

已知:直线ABCD相交于点O,且OEAB

(1)过点O画直线MNCD

(2)若点F(1)中所画直线MN上任意一点(O点除外),若AOC=35°,求EOF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】温州苍南马站四季柚,声名远播,今年又是一个丰收年,某经销商为了打开销路,对1 000个四季柚进行打包优惠出售.打包方式及售价如图所示.假设用这两种打包方式恰好装完全部柚子.

(1)若销售a箱纸盒装和a袋编织袋装四季柚的收入共950元,求a的值;

(2)当销售总收入为7 280元时:

若这批四季柚全部售完,请问纸盒装共包装了多少箱,编织袋装共包装了多少袋.

若该经销商留下b(b>0)箱纸盒装送人,其余柚子全部售出,求b的值.

查看答案和解析>>

同步练习册答案