精英家教网 > 初中数学 > 题目详情

【题目】如图所示,将长方形ABCD沿直线BD折叠,使点C落在点C′处,BC′AD于点E,AD=16,AB=8,求DE的长.

【答案】DE=10.

【解析】

根据翻折性质可得: CDC′DAB8,C=∠C′90°,DEx,则AE16x.

再根据全等三角形的判定定理可证△ABE≌△C′DE,根据全等三角形性质可得BEDEx,

再利用勾股定理列方程即可求解.

解:由折叠的性质,得:

CD=C′D=AB=8,CC′=90°.

DE=x,则AE=16-x.

ABEC′DE中,

∴△ABE≌△C′DE,

BE=DE=x,

RtABE中,由勾股定理得:

AB2+AE2=BE2,即82+(16-x)2x2,

解得x=10,即DE=10.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某车间有60个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件24个或乙种零件12个已知每2个甲种零件和3个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】家庭过期药品属于国家危险废物处理不当将污染环境,危害健康.某市药监部门为了了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查本次抽样调查发现,接受调查的家庭都有过期药品,现将有关数据呈现如图:

(1)求m、n的值;

(2)补全条形统计图;

(3)家庭过期药品的正确处理方式是送回收站,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收站.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,-3,+10,-8,-6,+12,-10

(1)守门员最后是否回到了球门线的位置?

(2)在练习过程中,守门员离开球门最远距离是多少米?

(3)守门员全部练习结束后,他共跑了多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,请你观察下列几种简单多面体模型,解答下列问题:

1 2

探索新知如图1,(1)根据上面多面体模型,完成表格中的空格;

多面体

顶点数(V

面数(F

棱数(E

四面体

4

4

长方体

8

6

12

正八面体

8

12

正十二面体

20

12

30

你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是   

(2)根据以上关系式猜想是否存在一个多面体,它有16个面,50条棱,34个顶点?并写出理由。

(实际应用)如图2,足球一般有32块黑白皮子缝合而成黑色的是正五边形,白色的是正六边形,如

果我们近似把足球看成一个多面体.

(1)设黑色的正五边形有x块,则白色的正六边形有(32﹣x块,当把足球看成一个多面体时,它的棱数是  它的顶点数是  

(2)求出黑皮和白皮各有多少块

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数列:0,2,4,8,12,18,…是我国的大衍数列,也是世界数学史上第一道数列题.该数列中的奇数项可表示为,偶数项表示为

如:第一个数为=0,第二个数为=2,…

现在数轴的原点上有一点P,依次以大衍数列中的数为距离向左右来回跳跃.

第1秒时,点P在原点,记为P1;

第2秒时,点P向左跳2个单位,记为P2,此时点P2所表示的数为-2;

第3秒时,点P向右跳4个单位,记为P3,此时点P3所表示的数为2;

按此规律跳跃,点P20表示的数为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知数轴上两点A,B对应的数分别为-4,8.

(1)如图1,如果点P和点Q分别从点AB同时出发,沿数轴负方向运动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒6个单位

AB两点之间的距离

PQ两点相遇时,点P在数轴上对应的数几

求点P出发多少秒后,与点Q之间相距4个单位长度?

(2)如图2,如果点P从点A出发沿数轴的正方向以每秒2个单位的速度运动,点Q从点B出发沿数轴的负方向以每秒6个单位的速度运动,点M从数轴原点O出发沿数轴的正方向以每秒1个单位的速度运动,若三个点同时出发,经过多少秒后有MP=MQ

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】折叠矩形ABCD的一边AD,使点D落在BC边的F点处,若AB=8cm,BC=10cm,求EC的长.

查看答案和解析>>

同步练习册答案