| A. | 21cm | B. | 20 cm | C. | 19cm | D. | 18cm |
分析 根据题意得出在矩形布料上裁剪下了最大的扇面时对应位置关系,进而结合直角三角形的性质求出BO,AB的长.
解答
解:如图所示:由题意可得:当在矩形布料上裁剪下了最大的扇面,此时扇形与矩形的边长相切,切点为E,
过点O作OF⊥CB,于点F,
则∠ABC=∠OBF=30°,OF=$\frac{1}{2}$BO,AC=$\frac{1}{2}$AB,
设FO=xcm,则BF=$\sqrt{3}$xcm,BO=2xcm,
∵折扇扇面的宽度AB是骨柄长OA的$\frac{3}{4}$,
∴AB=6xcm,
故AC=3xcm,BC=3$\sqrt{3}$xcm,
故2×($\sqrt{3}$x+3$\sqrt{3}$x)=24$\sqrt{3}$,
解得:x=3,
故AB=6x=18(cm),
故选:D.
点评 此题主要考查了直角三角形的性质以及扇形面积,正确得出扇形与矩形的关系是解题关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | -2 | B. | 0.07 | C. | 0 | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{n°}{2n}$ | B. | $\frac{n°}{2^n}$ | C. | $\frac{n°}{{{2^{n-1}}}}$ | D. | $\frac{n°}{2(n-1)}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com